Are Shimura Varieties \(K(\pi, 1)\)'s?

Let \(\mathscr{A}_g\) be the moduli space of principally polarized Abelian varieties of dimension \(g\).  The complex-analytic space (stack) associated to \(\mathscr{A}_g\) is a \(K(\pi,1)\); that is, its only non-vanishing homotopy group is \(\pi_1\), which is \(Sp_{2g}(\mathbb{Z})\).  In particular, the cohomology of \(\mathscr{A}_g\) is the same as the cohomlogy of \(Sp_{2g}(\mathbb{Z})\).

Jesse Silliman, a graduate student at Stanford, has told me an argument that shows that this is in some sense maximally untrue when one considers the "etale homotopy type" of \(\mathscr{A}_g\). 

Read More