Local systems of geometric origin

Daniel Litt

University of Toronto

July 4, 2023

Joint with Josh Lam and Aaron Landesman

Introduction

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \text{Id}\}/\sim$$

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \text{Id}\}/\sim$$

Symmetries:

$$\sigma_i: (A_1, A_2, \cdots, A_n) \mapsto (A_1, \cdots, A_i A_{i+1} A_i^{-1}, A_i, \cdots, A_n).$$

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \operatorname{Id}\}/\sim$$

Symmetries:

$$\sigma_i: (A_1, A_2, \cdots, A_n) \mapsto (A_1, \cdots, A_i A_{i+1} A_i^{-1}, A_i, \cdots, A_n).$$

$$\mathsf{Mod}_{0,n} = \langle \sigma_1, \cdots, \sigma_{n-1} | \mathsf{braid relations} \rangle \bigcirc X_{0,n}(r)$$

$$X_{0,n}(r) = \{(A_1, \cdots, A_n) \in SL_r(k)^n \mid \prod A_i = \mathrm{Id}\}/\sim$$

Symmetries:

$$\sigma_i:(A_1,A_2,\cdots,A_n)\mapsto(A_1,\cdots,A_iA_{i+1}A_i^{-1},A_i,\cdots,A_n).$$

$$\mathsf{Mod}_{0,n} = \langle \sigma_1, \cdots, \sigma_{n-1} | \mathsf{braid} \mathsf{ relations} \rangle \bigcirc X_{0,n}(r)$$

Question

What are the finite orbits of

$$Mod_{0,n} \bigcirc X_{0,n}(r)$$
?

1. (A_1, \dots, A_n) s.t. $\langle A_1, \dots A_n \rangle \subset SL_r(k)$ is finite

- 1. (A_1, \dots, A_n) s.t. $\langle A_1, \dots A_n \rangle \subset SL_r(k)$ is finite
- 2. Rigid tuples:

Definition

$$(A_1, \dots, A_n)$$
 is rigid if for all (A'_1, \dots, A'_n) with $A_i \sim A'_i$ for all i , we have $(A_1, \dots, A_n) \sim (A'_1, \dots, A'_n)$.

- 1. (A_1, \dots, A_n) s.t. $\langle A_1, \dots A_n \rangle \subset SL_r(k)$ is finite
- 2. Rigid tuples:

Definition

$$(A_1, \dots, A_n)$$
 is rigid if for all (A'_1, \dots, A'_n) with $A_i \sim A'_i$ for all i , we have $(A_1, \dots, A_n) \sim (A'_1, \dots, A'_n)$.

Classified by Katz ('96)

- 1. (A_1, \dots, A_n) s.t. $\langle A_1, \dots A_n \rangle \subset SL_r(k)$ is finite
- 2. Rigid tuples:

Definition

$$(A_1, \dots, A_n)$$
 is rigid if for all (A'_1, \dots, A'_n) with $A_i \sim A'_i$ for all i , we have $(A_1, \dots, A_n) \sim (A'_1, \dots, A'_n)$.

Classified by Katz ('96)

3. Otherwise, open except for r = 2, n = 3 (all rigid), n = 4 (Lisovyy-Tykhyy), n = 5 (Calligaris-Mazzocco, Tykhyy),

- 1. (A_1, \dots, A_n) s.t. $\langle A_1, \dots A_n \rangle \subset SL_r(k)$ is finite
- 2. Rigid tuples:

Definition

$$(A_1, \dots, A_n)$$
 is rigid if for all (A'_1, \dots, A'_n) with $A_i \sim A'_i$ for all i , we have $(A_1, \dots, A_n) \sim (A'_1, \dots, A'_n)$.

Classified by Katz ('96)

3. Otherwise, open except for r = 2, n = 3 (all rigid), n = 4 (Lisovyy-Tykhyy), n = 5 (Calligaris-Mazzocco, Tykhyy), using computer & effective Manin-Mumford for tori

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}) = \langle \gamma_1, \cdots, \gamma_n \mid \prod \gamma_i = \mathrm{id} \rangle$$

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}) = \langle \gamma_1, \cdots, \gamma_n \mid \prod \gamma_i = \mathrm{id} \rangle$$

$$X_{0,n}(r) = \operatorname{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k))/\sim$$

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}) = \langle \gamma_1, \cdots, \gamma_n \mid \prod \gamma_i = \mathrm{id} \rangle$$

$$X_{0,n}(r) = \mathrm{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

rigid tuples = isolated points

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = \mathrm{id} \rangle$$
$$X_{0,n}(r) = \mathrm{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = \mathrm{id} \rangle$$
$$X_{0,n}(r) = \mathrm{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$,

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = id \rangle$$
$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$, with $\rho(\gamma_i)$ quasi-unipotent (all eigenvalues roots of unity),

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = id \rangle$$
$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$, with $\rho(\gamma_i)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = id \rangle$$
$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$, with $\rho(\gamma_i)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^1 \pi_* k$ for some \mathbb{L} with dim $\mathbb{L} = 1$

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = id \rangle$$
$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$, with $\rho(\gamma_i)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

- 1. $\rho \otimes \mathbb{L} \subset R^1 \pi_* k$ for some \mathbb{L} with dim $\mathbb{L} = 1$
- 2. For $w \in \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, $\pi^{-1}(w)$ is $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ cover of \mathbb{P}^1 branched over w, x_1, \dots, x_n .

$$\pi_1(\Sigma_{0,n}) := \pi_1(\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}) = \langle \gamma_1, \dots, \gamma_n \mid \prod \gamma_i = id \rangle$$
$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Theorem (Riemann, r = 2)

Given a rigid tuple $[\rho] \in X_{0,n}(2)$, with $\rho(\gamma_i)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

- 1. $\rho \otimes \mathbb{L} \subset R^1 \pi_* k$ for some \mathbb{L} with dim $\mathbb{L} = 1$
- 2. For $w \in \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, $\pi^{-1}(w)$ is $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ cover of \mathbb{P}^1 branched over w, x_1, \dots, x_n .

(Katz '96) For all *r*, iterated version of this: "middle convolution"

Upshot (Katz '96)

All rigid tuples (A_1, \dots, A_n) with A_i quasi-unipotent (eigenvalues are roots of unity) are of geometric origin and have been algorithmically classified.

Upshot (Katz '96)

All rigid tuples (A_1, \dots, A_n) with A_i quasi-unipotent (eigenvalues are roots of unity) are of geometric origin and have been algorithmically classified.

Question

What about more general finite orbits of

$$Mod_{0,n} \bigcirc X_{0,n}(r)$$
?

Not all finite orbits are rigid tuples

$$A_{1} = \begin{pmatrix} 1 + x_{2}x_{3}/x_{1} & -x_{2}^{2}/x_{1} \\ x_{3}^{2}/x_{1} & 1 - x_{2}x_{3}/x_{1} \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & -x_{1} \\ 0 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 1 & 0 \\ x_{1} & 1 \end{pmatrix},$$

$$A_{4} = (A_{1}A_{2}A_{3})^{-1}$$

where

$$x_1 = 2\cos\left(\frac{\pi(\alpha+\beta)}{2}\right), \ x_2 = 2\sin\left(\frac{\pi\alpha}{2}\right), \ x_3 = 2\sin\left(\frac{\pi\beta}{2}\right)$$

for $\alpha, \beta \in \mathbb{Q}$.

Geometric Point of View

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \operatorname{Id}\}/\sim$$

Symmetries:

$$\sigma_{i}: (A_{1}, A_{2}, \cdots, A_{n}) \mapsto (A_{1}, \cdots, A_{i}A_{i+1}A_{i}^{-1}, A_{i}, \cdots, A_{n}).$$

$$\mathsf{Mod}_{0,n} = \langle \sigma_{1}, \cdots, \sigma_{n-1} \rangle \bigcirc X_{0,n}(r)$$

Geometric Point of View

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \text{Id}\}/\sim$$

Symmetries:

$$\sigma_i:(A_1,A_2,\cdots,A_n)\mapsto(A_1,\cdots,A_iA_{i+1}A_i^{-1},A_i,\cdots,A_n).$$

$$\mathsf{Mod}_{0,n} = \langle \sigma_1, \cdots, \sigma_{n-1} \rangle \bigcirc X_{0,n}(r)$$

Geometry:

$$X_{0,n}(r) = \text{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k)) / \sim$$

Geometric Point of View

$$X_{0,n}(r) = \{(A_1, \dots, A_n) \in SL_r(k)^n \mid \prod A_i = \text{Id}\}/\sim$$

Symmetries:

$$\sigma_i:(A_1,A_2,\cdots,A_n)\mapsto(A_1,\cdots,A_iA_{i+1}A_i^{-1},A_i,\cdots,A_n).$$

$$Mod_{0,n} = \langle \sigma_1, \cdots, \sigma_{n-1} \rangle \bigcirc X_{0,n}(r)$$

Geometry:

$$X_{0,n}(r) = \operatorname{Hom}(\pi_1(\Sigma_{0,n}), SL_r(k))/\sim$$

$$Mod_{0,n} = \pi_0(Homeo^+(\Sigma_{0,n}))$$
$$= \pi_1(\mathcal{M}_{0,n}/S_n)$$

= "spherical braid group on *n* strands"

$$X_{g,n}(r) = \operatorname{Hom}(\pi_1(\Sigma_{g,n}), SL_r(k))/\sim$$

$$X_{g,n}(r) = \operatorname{Hom}(\pi_1(\Sigma_{g,n}), SL_r(k))/\sim$$
 $\operatorname{Mod}_{g,n} = \pi_0(\operatorname{Homeo}^+(\Sigma_{g,n}))$
 $= \pi_1(\mathscr{M}_{g,n}/S_n)$
 $=$ "mapping class group of $\Sigma_{g,n}$ "

$$X_{g,n}(\mathbf{r}) = \operatorname{Hom}(\pi_1(\Sigma_{g,n}), \operatorname{SL}_{\mathbf{r}}(k))/\sim$$

$$\operatorname{\mathsf{Mod}}_{g,n} = \pi_0(\operatorname{\mathsf{Homeo}}^+(\Sigma_{g,n}))$$

$$= \pi_1(\mathscr{M}_{g,n}/S_n)$$

$$= \text{"mapping class group of } \Sigma_{g,n}$$
"

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

studied by Eskin, Wright, \cdots & Goldman, Previte-Xia, \cdots

$$X_{g,n}(\mathbf{r}) = \operatorname{Hom}(\pi_1(\Sigma_{g,n}), \operatorname{SL}_{\mathbf{r}}(k))/\sim$$

$$\operatorname{\mathsf{Mod}}_{g,n} = \pi_0(\operatorname{\mathsf{Homeo}}^+(\Sigma_{g,n}))$$

$$= \pi_1(\mathscr{M}_{g,n}/S_n)$$

$$= \text{"mapping class group of } \Sigma_{g,n}$$
"

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

studied by Eskin, Wright, \cdots & Goldman, Previte-Xia, \cdots

Question

What are the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

Some motivation and conjectures

Where does this question appear?

Question

What are the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

Where does this question appear?

Question

What are the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

1. Kisin et al's approach to Grothendieck-Katz *p*-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)

Question

What are the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

- 1. Kisin et al's approach to Grothendieck-Katz *p*-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)
- 2. Bourgain-Gamburd-Sarnak & Chen: strong approximation for $X_{0,4}(2)$

Question

What are the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

- 1. Kisin et al's approach to Grothendieck-Katz *p*-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)
- 2. Bourgain-Gamburd-Sarnak & Chen: strong approximation for $X_{0,4}(2)$ Whang: partial results for $X_{g,n}(r)$

A conjecture

Conjecture (Kisin, Whang)

For $g \gg_r 0$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

are exactly the representations with finite image.

3. Algebraic solutions to:

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$\frac{d^2y}{dt^2} = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} + \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right)$$

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$\frac{d^2y}{dt^2} = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} + \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right)$$

are finite orbits of $Mod_{0,4} \bigcirc X_{0,4}(2)$

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$\frac{d^2y}{dt^2} = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} + \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right)$$

are finite orbits of $Mod_{0,4} \bigcirc X_{0,4}(2)$ (classified by Lysovyy-Tykhyy (2014), building on work of Schwarz, Poincaré, \cdots , Hitchin, Boalch, Doran, Andreev, Kitaev, Dubrovin-Mazzocco, \cdots)

4. Algebraic solutions to:

Schlesinger system, 1912

$$\begin{cases} \frac{dA_i}{d\lambda_j} = \frac{[A_i, A_j]}{\lambda_i - \lambda_j} & i \neq j \\ \frac{dA_i}{d\lambda_i} = -\sum_{j \neq i} \frac{[A_i, A_j]}{\lambda_i - \lambda_j} \end{cases}$$

with $A_i \in \mathfrak{sl}_r$, are finite orbits of $\operatorname{Mod}_{0,n} \bigcirc X_{0,n}(r)$

5. Geometric local systems

5. Geometric local systems

Definition

X: smooth algebraic variety

 \mathbb{V} : irreducible k-local system on X

5. Geometric local systems

Definition

X: smooth algebraic variety

 \mathbb{V} : irreducible k-local system on X

 \mathbb{V} is of geometric origin if $\exists U \subset X$ dense open and

$$\pi: Y \to U$$

smooth proper such that $\mathbb{V}|_U \subset R^i \pi_* k$ for some *i*.

5. Geometric local systems

Definition

X: smooth algebraic variety

 \mathbb{V} : irreducible k-local system on X

 \mathbb{V} is of geometric origin if $\exists U \subset X$ dense open and

$$\pi: Y \to U$$

smooth proper such that $\mathbb{V}|_U \subset R^i \pi_* k$ for some *i*.

Question

Which local systems are of geometric origin?

Question

Which local systems are of geometric origin?

Question

Which local systems are of geometric origin?

Conjecture (Non-abelian Hodge conjecture, Simpson)

 $(X \operatorname{smooth}/\mathbb{C})$

Question

Which local systems are of geometric origin?

Conjecture (Non-abelian Hodge conjecture, Simpson)

(X smooth/ \mathbb{C}) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Question

Which local systems are of geometric origin?

Conjecture (Non-abelian Hodge conjecture, Simpson)

(X smooth/ \mathbb{C}) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Conjecture (Non-abelian Tate conjecture, Fontain-Mazur/Petrov)

(X smooth/f.g. field F with char(F) $\neq \ell$)

Question

Which local systems are of geometric origin?

Conjecture (Non-abelian Hodge conjecture, Simpson)

(X smooth/ \mathbb{C}) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Conjecture (Non-abelian Tate conjecture, Fontain-Mazur/Petrov)

(X smooth/f.g. field F with char(F) $\neq \ell$) An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ is of geometric origin if and only if it has finite orbit under the absolute Galois group of F.

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

• $\exists \pi: Y \to X_{\bar{f}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \to X_{\bar{f}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F'/F.

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \to X_{\bar{f}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F'/F.
- Hence $R^i\pi_*\mathbb{Q}_\ell$ fixed (up to isomorphism) by absolute Galois group of F'.

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \to X_{\bar{f}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F'/F.
- Hence $R^i\pi_*\mathbb{Q}_\ell$ fixed (up to isomorphism) by absolute Galois group of F'.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures),

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \to X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F'/F.
- Hence $R^i\pi_*\mathbb{Q}_\ell$ fixed (up to isomorphism) by absolute Galois group of F'.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures), then $[\mathbb{V}] \in X_{g,n}(r)$

Proposition (Easy direction of non-abelian Tate conjecture)

An ℓ -adic local system \mathbb{V} on $X_{\overline{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \to X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^i \pi_* \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F'/F.
- Hence $R^i\pi_*\mathbb{Q}_\ell$ fixed (up to isomorphism) by absolute Galois group of F'.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures), then $[\mathbb{V}] \in X_{g,n}(r)$ has finite orbit under $Mod_{g,n}$.

What do local systems of geometric origin look like?

What do local systems of geometric origin look like?

Conjecture (Esnault-Kerz, Budur-Wang)

Z smooth variety. Then local systems of geometric origin are Zariski-dense in the space of all local systems on Z.

What do local systems of geometric origin look like?

Conjecture (Esnault-Kerz, Budur-Wang)

Z smooth variety. Then local systems of geometric origin are Zariski-dense in the space of all local systems on Z.

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are Zariski dense.

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

 $Mod_{g,n} \bigcirc X_{g,n}(r)$

are Zariski dense.

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are Zariski dense.

Conjecture (Kisin, Whang)

For $g \gg_r 0$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

are exactly the representations with finite image.

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are Zariski dense.

Conjecture (Kisin, Whang)

For $g \gg_r 0$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$
?

are exactly the representations with finite image.

These two conjectures contradict each other if r > 1!

Some results

Question

What are the finite orbits of

$$Mod_{0,n} \subset X_{0,n}(2) = \{(A_1, \cdots, A_n) \in SL_2(k)^n \mid \prod A_i = Id\}?$$

Question

What are the finite orbits of

$$Mod_{0,n} \bigcirc X_{0,n}(2) = \{(A_1, \cdots, A_n) \in SL_2(k)^n \mid \prod A_i = Id\}?$$

(Corlette-Simpson) Enough to classify those such that:

Question

What are the finite orbits of

$$Mod_{0,n} \bigcirc X_{0,n}(2) = \{(A_1, \cdots, A_n) \in SL_2(k)^n \mid \prod A_i = Id\}?$$

(Corlette-Simpson) Enough to classify those such that:

• $\langle A_1, \cdots, A_n \rangle$ is Zariski-dense in SL_2

Question

What are the finite orbits of

$$Mod_{0,n} \bigcirc X_{0,n}(2) = \{(A_1, \cdots, A_n) \in SL_2(k)^n \mid \prod A_i = Id\}?$$

(Corlette-Simpson) Enough to classify those such that:

- $\langle A_1, \cdots, A_n \rangle$ is Zariski-dense in SL_2
- The corresponding local system on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$ is of geometric origin for generic $\{x_1, \dots, x_n\}$

Question

What are the finite orbits of

$$Mod_{0,n} \subset X_{0,n}(2) = \{(A_1, \cdots, A_n) \in SL_2(k)^n \mid \prod A_i = Id\}?$$

(Corlette-Simpson) Enough to classify those such that:

- $\langle A_1, \cdots, A_n \rangle$ is Zariski-dense in SL_2
- The corresponding local system on $\mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$ is of geometric origin for generic $\{x_1, \dots, x_n\}$

Theorem (Lam-L-)

In this situation, if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Theorem (Lam-L–)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2))$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

1.
$$\rho \otimes \mathbb{L} \subset R^1 \pi_* k$$
 for some \mathbb{L} with dim $\mathbb{L} = 1$

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2))$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$\pi: Z \to \mathbb{P}^1 \setminus \{x_1, \cdots, x_n\}$$

such that:

- 1. $\rho \otimes \mathbb{L} \subset R^1 \pi_* k$ for some \mathbb{L} with dim $\mathbb{L} = 1$
- 2. For $w \in \mathbb{P}^1 \setminus \{x_1, \dots, x_n\}$, $\pi^{-1}(w)$ is $\mathbb{Z}/a\mathbb{Z} \times G$ cover of \mathbb{P}^1 branched over w, x_1, \dots, x_n , where G is a finite complex reflection group.

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset GL_r(\mathbb{C})$ is a *finite complex reflection group* if it is finite, acts irreducibly on \mathbb{C}^r , and is generated by some g_i such that $\operatorname{rk}(g_i - \operatorname{Id}) = 1$.

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset GL_r(\mathbb{C})$ is a *finite complex reflection group* if it is finite, acts irreducibly on \mathbb{C}^r , and is generated by some g_i such that $\operatorname{rk}(g_i - \operatorname{Id}) = 1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954!

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset GL_r(\mathbb{C})$ is a *finite complex reflection group* if it is finite, acts irreducibly on \mathbb{C}^r , and is generated by some g_i such that $\operatorname{rk}(g_i - \operatorname{Id}) = 1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954! One infinite 3-parameter family and 34 exceptional examples,

Theorem (Lam-L-)

In this situation $((A_1, \dots, A_n) \in X_{0,n}(2)$ & geometric origin), if some A_i has infinite order, then (A_1, \dots, A_n) arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset GL_r(\mathbb{C})$ is a *finite complex reflection group* if it is finite, acts irreducibly on \mathbb{C}^r , and is generated by some g_i such that $\operatorname{rk}(g_i - \operatorname{Id}) = 1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954! One infinite 3-parameter family and 34 exceptional examples, e.g. classical Weyl groups and automorphism groups of regular polyhedra.

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

Theorem (Landesman-L-)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

Theorem (Landesman-L-)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

• Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

Theorem (Landesman-L-)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

- Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.
- Proof relies on non-Abelian Hodge theory (Mochizkuki-Simpson), input from Langlands (Esnault-Groechenig).

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

Theorem (Landesman-L-)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

• Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.

26

- Proof relies on non-Abelian Hodge theory (Mochizkuki-Simpson), input from Langlands (Esnault-Groechenig).
- Known in rank 2 by Biswas-Gupta-Mj-Whang.

Geometric local systems

Corollary

In the regime (in g, n, r) where these theorems hold, the non-abelian Hodge and Tate conjectures are true for rank r local systems on the generic curve of genus g with n punctures.

Geometric local systems

Corollary

In the regime (in g, n, r) where these theorems hold, the non-abelian Hodge and Tate conjectures are true for rank r local systems on the generic curve of genus g with n punctures.

In fact we've written down all geometric local systems (under mild assumptions).

genus (g)

genus (g)

28

genus (g)

Conjecture (Superrigidity)

If $g \ge 3$, all irreducible local systems on $\mathcal{M}_{g,n}$ are rigid.

Conjecture (Superrigidity)

If $g \ge 3$, all irreducible local systems on $\mathcal{M}_{g,n}$ are rigid.

Geometricity

Assuming Simpson's motivicity conjecture, implies all finite orbits (for $g \ge 3$) are "of geometric origin."

Conjecture (Superrigidity)

If $g \geq 3$, all irreducible local systems on $\mathcal{M}_{g,n}$ are rigid.

Geometricity

Assuming Simpson's motivicity conjecture, implies all finite orbits (for $g \ge 3$) are "of geometric origin."

Question

C a generic curve of genus g with n punctures. Can one write down all local systems on C of geometric origin?

Proof idea

Theorem (Landesman-L-)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

Theorem (Landesman-L–)

For $g > r^2 - 1$, the finite orbits of

$$Mod_{g,n} \bigcirc X_{g,n}(r)$$

are exactly the representations with finite image.

For simplicity assume ρ irreducible. Mod_{g,η} · $[\rho]$ finite \implies there exists:

$$\mathcal{C} \qquad \mathbb{V} \in \mathsf{LocSys}_r(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 $\operatorname{Mod}_{g,n} \cdot [\rho]$ finite \Longrightarrow there exists:

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

such that $\mathbb{V}|_{\mathscr{C}_m}$ has monodromy ρ . Use this to show:

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

such that $\mathbb{V}|_{\mathscr{C}_m}$ has monodromy ρ . Use this to show:

• \mathbb{V} defined over \mathcal{O}_K for K a # field.

 $\mathsf{Mod}_{g,n}\cdot[\rho]$ finite \implies there exists:

- Use this to show:
 - \mathbb{V} defined over \mathcal{O}_K for K a # field.
 - For all $\iota : \mathscr{O}_K \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ is unitary.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

 $\operatorname{Mod}_{g,n} \cdot [\rho]$ finite \Longrightarrow there exists:

such that $\mathbb{V}|_{\mathscr{C}_m}$ has monodromy ρ .

• Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies $\mathbb V$ is cohomologically rigid.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies $\mathbb V$ is cohomologically rigid.
- ullet Cohomologically rigid $\stackrel{[Esnault-Groechenig]}{\Longrightarrow} \mathbb{V}$ defined over $\mathscr{O}_{\mathcal{K}}$

 $\mathsf{Mod}_{g,n}\cdot[\rho]$ finite \implies there exists:

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies $\mathbb V$ is cohomologically rigid.
- $\bullet \ \ \text{Cohomologically rigid} \stackrel{[\mathsf{Esnault-Groechenig}]}{\Longrightarrow} \mathbb{V} \ \text{defined over} \ \mathscr{O}_{\mathcal{K}}$
- Rigid $\stackrel{\mathsf{NAHT}}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies $\mathbb{C}\text{-VHS}$

 $\operatorname{Mod}_{g,n} \cdot [\rho]$ finite \Longrightarrow there exists:

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies $\mathbb V$ is cohomologically rigid.
- ullet Cohomologically rigid $\stackrel{[Esnault-Groechenig]}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_K
- Rigid $\stackrel{\mathsf{NAHT}}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies $\mathbb{C}\text{-VHS}$
- Perturb m so that $\mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.

The unitary case

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- ullet Cohomologically rigid $\stackrel{[Esnault-Groechenig]}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_K
- Rigid $\stackrel{\mathsf{NAHT}}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies $\mathbb{C}\text{-VHS}$
- Perturb m so that $\mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.

The unitary case

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow \\ m \in \mathscr{M} \xrightarrow{\mathsf{dominant}} \mathscr{M}_{g,n} \end{array}$$

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- ullet Cohomologically rigid $\stackrel{[Esnault-Groechenig]}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_K
- Rigid $\stackrel{\mathsf{NAHT}}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies $\mathbb{C}\text{-VHS}$
- Perturb m so that $\mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.
- Integral and unitary implies finite image.

The unitary case

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow \\ m \in \mathscr{M} \xrightarrow{\mathsf{dominant}} \mathscr{M}_{g,n} \end{array}$$

- Assume ρ is unitary, $r < \sqrt{g+1}$. Then period map computation implies $\mathbb V$ is cohomologically rigid.
- ullet Cohomologically rigid $\stackrel{[Esnault-Groechenig]}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_K
- Rigid $\stackrel{\mathsf{NAHT}}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{\mathsf{K}} \hookrightarrow \mathbb{C}$, $\mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies $\mathbb{C}\text{-VHS}$
- Perturb m so that $\mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\Longrightarrow \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary. Answers question of [Biswas-Heu-Hurtubise].
- Integral and unitary implies finite image.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

such that $\mathbb{V}|_{\mathscr{C}_m}$ has monodromy ρ .

• Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C ext{-VHS }\mathbb V'.$

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C ext{-VHS }\mathbb V'.$
- Perturb m so that $\mathbb{V}'|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V}'|_{\mathscr{C}_m}$ unitary.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C$ -VHS $\mathbb V'$.
- Perturb m so that $\mathbb{V}'|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V}'|_{\mathscr{C}_m}$ unitary.
- Period map computation implies \mathbb{V}' is rigid.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C ext{-VHS }\mathbb V'.$
- Perturb m so that $\mathbb{V}'|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V}'|_{\mathscr{C}_m}$ unitary.
- Period map computation implies \mathbb{V}' is rigid.
- Rigidity implies $\mathbb{V}|_{\mathscr{C}_m} = \mathbb{V}'|_{\mathscr{C}_m}$, hence ρ is unitary.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow \\ m \in \mathscr{M} \xrightarrow{\mathsf{dominant}} \mathscr{M}_{g,n} \end{array}$$

- Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C ext{-VHS }\mathbb V'.$
- Perturb m so that $\mathbb{V}'|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V}'|_{\mathscr{C}_m}$ unitary.
- Period map computation implies \mathbb{V}' is rigid.
- Rigidity implies $\mathbb{V}|_{\mathscr{C}_m} = \mathbb{V}'|_{\mathscr{C}_m}$, hence ρ is unitary.

 $\mathsf{Mod}_{g,n} \cdot [\rho]$ finite \implies there exists:

- Now take ρ arbitrary semisimple. NAHT: deform $\mathbb V$ to $\mathbb C ext{-VHS }\mathbb V'.$
- Perturb m so that $\mathbb{V}'|_{\mathscr{C}_m} \otimes \mathscr{O}$ is semistable $\implies \mathbb{V}'|_{\mathscr{C}_m}$ unitary.
- Period map computation implies \mathbb{V}' is rigid.
- Rigidity implies $\mathbb{V}|_{\mathscr{C}_m} = \mathbb{V}'|_{\mathscr{C}_m}$, hence ρ is unitary.
- Non-semisimple case: "large g" form of Putman-Wieland conjecture on Prym representations of $\mathsf{Mod}_{g,n} \cdots$

Too hard:

Which local systems are of geometric origin?

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological variant.

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological variant.

Classification

Which local systems on $\Sigma_{g,n}$ are of geometric origin for all algebraic structures on $\Sigma_{g,n}$?

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological variant.

Classification

Which local systems on $\Sigma_{g,n}$ are of geometric origin for all algebraic structures on $\Sigma_{g,n}$?

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological variant.

Classification

Which local systems on $\Sigma_{g,n}$ are of geometric origin for all algebraic structures on $\Sigma_{g,n}$?

Such local systems necessarily have finite orbit under $Mod_{g,n}$.

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological variant.

Classification

Which local systems on $\Sigma_{g,n}$ are of geometric origin for all algebraic structures on $\Sigma_{g,n}$?

Such local systems necessarily have finite orbit under $Mod_{g,n}$.

Superrigidity

For $g \ge 3$, are all local systems on $\Sigma_{g,n}$ with finite orbit under $\mathsf{Mod}_{g,n}$ of geometric origin?

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow^{\pi} \\ m \in \mathscr{M} \xrightarrow{\quad \mathsf{dominant} \quad } \mathscr{M}_{g,n} \end{array}$$

Rigidity Theorem (Landesman-L.-)

If $\mathbb{V}|_{\mathscr{C}_m}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V}) < \sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow^{\pi} \\ m \in \mathscr{M} \xrightarrow{\quad \mathsf{dominant} \quad } \mathscr{M}_{g,n} \end{array}$$

Rigidity Theorem (Landesman-L.-)

If $\mathbb{V}|_{\mathscr{C}_m}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V}) < \sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

• Need to show $H^0(\mathcal{M}, R^1\pi_*ad(\mathbb{V})) = 0$.

$$\begin{array}{ccc} \mathscr{C} & & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow^{\pi} & & \\ m \in \mathscr{M} & \xrightarrow{\mathsf{dominant}} & \mathscr{M}_{g,n} \end{array}$$

Rigidity Theorem (Landesman-L.-)

If $\mathbb{V}|_{\mathscr{C}_m}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V}) < \sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^0(\mathcal{M}, R^1\pi_*ad(\mathbb{V})) = 0$.
- $R^1\pi_*ad(\mathbb{V})$ carries \mathbb{C} -MHS.

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow^{\pi} \\ m \in \mathscr{M} \xrightarrow{\mathsf{dominant}} \mathscr{M}_{g,n} \end{array}$$

Rigidity Theorem (Landesman-L.-)

If $\mathbb{V}|_{\mathscr{C}_m}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V}) < \sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^0(\mathcal{M}, R^1\pi_*ad(\mathbb{V})) = 0$.
- $R^1\pi_*ad(\mathbb{V})$ carries \mathbb{C} -MHS.
- Set $E = \mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$. Derivative of period map given by

$$H^0(E \otimes \omega_C) \to \operatorname{Hom}(H^0(E^{\vee} \otimes \omega_C), H^0(\omega_C^{\otimes 2})).$$

$$\begin{array}{c} \mathscr{C} & \mathbb{V} \in \mathsf{LocSys}_{\mathcal{R}}(\mathscr{C}) \\ \downarrow^{\pi} \\ m \in \mathscr{M} \xrightarrow{\qquad \text{dominant} \qquad} \mathscr{M}_{g,n} \end{array}$$

Rigidity Theorem (Landesman-L.-)

If $\mathbb{V}|_{\mathscr{C}_m}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V}) < \sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^0(\mathcal{M}, R^1\pi_*ad(\mathbb{V})) = 0$.
- $R^1\pi_*ad(\mathbb{V})$ carries \mathbb{C} -MHS.
- Set $E = \mathbb{V}|_{\mathscr{C}_m} \otimes \mathscr{O}$. Derivative of period map given by

$$H^0(E \otimes \omega_C) \to \text{Hom}(H^0(E^{\vee} \otimes \omega_C), H^0(\omega_C^{\otimes 2})).$$

 Deformation yields non-trivial kernel, ruled out by Clifford theory.

Semistability theorem (Landesman-L.-)

If $\operatorname{rk}(\mathbb{V}) < 2\sqrt{g+1}$, then after perturbing complex structure on C to C', $\mathbb{V} \otimes \mathscr{O}_{C'}$ is semistable.

Semistability theorem (Landesman-L.-)

If $\operatorname{rk}(\mathbb{V}) < 2\sqrt{g+1}$, then after perturbing complex structure on C to C', $\mathbb{V} \otimes \mathscr{O}_{C'}$ is semistable.

• Want to deform C to destroy Harder-Narasimhan filtration HN^{\bullet} of $E := \mathbb{V} \otimes \mathcal{O}_{C}$.

Semistability theorem (Landesman-L.-)

If $\mathrm{rk}(\mathbb{V}) < 2\sqrt{g+1}$, then after perturbing complex structure on C to C', $\mathbb{V} \otimes \mathscr{O}_{C'}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration HN^{\bullet} of $E := \mathbb{V} \otimes \mathscr{O}_{C}$.
- Enough to show

$$\operatorname{Def}_C = H^1(C, T_C) \to H^1(\operatorname{End}(E)/\operatorname{Stab}_{HN^{\bullet}}) = \operatorname{Obs}(E, HN^{\bullet})$$
 is non-zero.

Semistability theorem (Landesman-L.-)

If $\mathrm{rk}(\mathbb{V}) < 2\sqrt{g+1}$, then after perturbing complex structure on C to C', $\mathbb{V} \otimes \mathscr{O}_{C'}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration HN^{\bullet} of $E := \mathbb{V} \otimes \mathscr{O}_{C}$.
- Enough to show

$$\operatorname{Def}_C = H^1(C, T_C) \to H^1(\operatorname{End}(E)/\operatorname{Stab}_{HN^{\bullet}}) = \operatorname{Obs}(E, HN^{\bullet})$$
 is non-zero.

• Pass to graded pieces and Serre dualize: enough to show

$$H^0(\operatorname{Hom}(\operatorname{gr}_{HN}^i E, \operatorname{gr}_{HN}^j E) \otimes \omega_C) \to H^0(\omega_C^{\otimes 2})$$

non-zero for some i > j.

Semistability theorem (Landesman-L.-)

If $\mathrm{rk}(\mathbb{V}) < 2\sqrt{g+1}$, then after perturbing complex structure on C to C', $\mathbb{V} \otimes \mathscr{O}_{C'}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration HN^{\bullet} of $E := \mathbb{V} \otimes \mathcal{O}_{C}$.
- Enough to show

$$\operatorname{Def}_C = H^1(C, T_C) \to H^1(\operatorname{End}(E)/\operatorname{Stab}_{HN^{\bullet}}) = \operatorname{Obs}(E, HN^{\bullet})$$
 is non-zero.

• Pass to graded pieces and Serre dualize: enough to show

$$H^0(\operatorname{Hom}(\operatorname{gr}_{HN}^i E, \operatorname{gr}_{HN}^j E) \otimes \omega_C) \to H^0(\omega_C^{\otimes 2})$$

non-zero for some i > j.

• Follows from Clifford theory.