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An open problem about r X r matrices

Xoa(r) = {(A1, -+ Ay) € SL(K)" | [[A = 1d}/ ~

Symmetries:

oi: (AL, Ag, - LAY = (AL L AALAT L AL LAY,
Mody, = (o1, -+, 0,_1] braid relations) C Xg »(r)

Question

What are the finite orbits of

MOdO,n C Xo’n(l‘)?
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Examples

1. (Aq, -+ LAy st (Ar, - Ay) C SL(k) is finite

2. Rigid tuples:

Definition

(A1, -+, Ap) isrigid if for all (A7, -+ AL) with
A; ~ Alforall i, we have (A, --- | A,) ~ (A, ---A)).

Classified by Katz ('96)

3. Otherwise, open except for r =2, n = 3 (all
rigid), n = 4 (Lisovyy-Tykhyy), n =5
(Calligaris-Mazzocco, Tykhyy), using computer &
effective Manin-Mumford for tori
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Theorem (Riemann, r = 2)
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Rigid tuples

Wl(EU:") = WI(PI \x %) = (v, | HA/’/I' = id)
Xo.n(r) = Hom(my(X0,), SL(k))/ ~
Theorem (Riemann, r = 2)
Civen a rigid tuple [p] € Xo,,(2), with p(~;) quasi-unipotent (all
eigenvalues roots of unity), there exists smooth proper

7T:Z—>IP’1\{X1,---,X,,}

such that:
1. p®L C R'm.k for some L with dimIL = 1

2. Forw € P\ {xy, -+ ,x,}, 7Y (w) is Z/aZ x Z/bZ cover
of P! branched over w, x1, -+ - , x,.

(Katz '96) For all r, iterated version of this: “middle convolution”
7



Rigid tuples

Upshot (Katz '96)

All rigid tuples (Aq, - - - ,A,) with A; quasi-unipotent
(eigenvalues are roots of unity) are of geometric origin and have
been algorithmically classified.



Rigid tuples

Upshot (Katz '96)

All rigid tuples (A, - -+ , A,) with A; quasi-unipotent
(eigenvalues are roots of unity) are of geometric origin and have
been algorithmically classified.

Question

What about more general finite orbits of

Mody,, C Xo,n(r)?



Not all finite orbits are rigid tuples

1 —x3 —
. ( + x2X3/x1 X3/x1 >,A2 _ (1 Xl) Ay =

x%/xl 1 — xox3/x1

Ay = (A1A2A3) 7!

where

X1 = 2cos <W), X9 = 2sin (?), X3 :2Sin(

for a, B € Q.

o)
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Symmetries:
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Geometric Point of View

Xon(r) = {(A1,-++ Ay € SL(K)™ [ T A = 1d}/ ~

Symmetries:

gj: (A17A27”' 7An) = (Ah" ’ 7AiAi+1Ai_17Ai7"'

MOd()’n = <0'1, e ;Un—1> C‘Xo,n(l’)
Geometry:

Xo.n(r) = Hom(m1(Xo,), SLi(K))/ ~

MOdo’n = 7T0(Homeo+(20,n))
— 71-1(%0,17/5n)

= “spherical braid group on n strands”
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Natural generalization
Xgn(r) = Hom(m(X,,), SL(k))/ ~
Mod, ,, = m(Homeo™ (3, ,))
= 71 (Mgn/Sh)

= “mapping class group of X, ,"

Modg , C Xg,(r)?

studied by Eskin, Wright, - - - & Goldman, Previte-Xia, - - -

Question

What are the finite orbits of

Modg , C Xgn(r)?
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Where does this question appear?

Question

What are the finite orbits of

Modg , C Xgn(r)?

1. Kisin et al’s approach to Grothendieck-Katz
p-curvature conjecture (Sinz, Papaioannou,
Menzies, Shankar, Patel-Shankar-Whang)

2. Bourgain-Gamburd-Sarnak & Chen: strong
approximation for Xy 4(2)

Whang: partial results for X, ,(r)
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A conjecture

Conjecture (Kisin, Whang)
For g >, 0, the finite orbits of

Modg , C Xgn(r)?

are exactly the representations with finite image.
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3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

Py 1/(1 1 1 d\? /1 1 1\ dy
— = |-+—+—)|=] " [=+—+—] =
d?  2\y y—-1 y—t) \dt t t—1 y—t) dt

y(ly —1)(y —t) t t—1 t(t—1)
2(t—1)? (“*%”w-n”‘sw—t)?)

_l’_
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Where does this question appear?

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

Py 1/(1 1 1 d\? /1 1 1\ dy
—Z =zt —+— (2] [+ —=+— =
d?  2\y y—-1 y—t) \dt t t—1 y—t) dt

+y(y—1)(y—t)( t t—1 t(t—l))

212 \“TPETI ety e

are finite orbits of Modg 4 C Xo 4(2) (classified by Lysovyy-Tykhyy
(2014), building on work of Schwarz, Poincaré, - - -, Hitchin,
Boalch, Doran, Andreev, Kitaev, Dubrovin-Mazzocco, - - )
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Where does this question appear?

4. Algebraic solutions to:

Schlesinger system, 1912

rdAi _ [AHA/] I7é .
dy - N— N /

Yda < AnAl

AR

with A; € sl,, are finite orbits of Mody, C Xo »(r)
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Where does this question appear?

5. Geometric local systems
Definition
X: smooth algebraic variety

V: irreducible k-local system on X
V is of geometric origin if 3U C X dense open and

m:Y—U

smooth proper such that V|, C R'm.k for some i.

Question
Which local systems are of geometric origin?
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Conjectures

Question

Which local systems are of geometric origin?

Conjecture (Non-abelian Hodge conjecture, Simpson)

(X smooth/C) A complex local system on X is of
geometric origin if and only if it underlies an integral,
polarizable variation of Hodge structure.

Conjecture (Non-abelian Tate conjecture, Fontain-Mazur/Petrov)

(X smooth/f.g. field F with char(F) # ) An (-adic
local system V on Xz is of geometric origin if and
only if it has finite orbit under the absolute Galois
group of F.

18



Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)

An (-adic local system V on Xz of geometric origin has finite orbit
under the absolute Galois group of F.
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Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)

An (-adic local system V on Xz of geometric origin has finite orbit
under the absolute Galois group of F.

“Proof”.

e Jm: Y — Xg smooth proper so that V appears in R, Qy.
e Y, 7 defined over finite extension F'/F.

e Hence R'm,Qy fixed (up to isomorphism) by absolute Galois
group of F'.

Corollary

If V is a local system of geometric origin on a generic curve C (of
genus g with n punctures), then [V] € Xg 5(r)
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Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)

An (-adic local system V on Xz of geometric origin has finite orbit
under the absolute Galois group of F.

“Proof”.

e Jm: Y — Xg smooth proper so that V appears in R, Qy.
e Y, 7 defined over finite extension F'/F.

e Hence R'm,Qy fixed (up to isomorphism) by absolute Galois
group of F'.

Corollary

If V is a local system of geometric origin on a generic curve C (of
genus g with n punctures), then [V] € X, 5(r) has finite orbit under
Mody .
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What do local systems of geometric origin look like?

Conjecture (Esnault-Kerz, Budur-Wang)
Z smooth variety. Then local systems of geometric origin are

Zariski-dense in the space of all local systems on Z.

Conjecture (Consequence of conjecture of Esnault-Kerz,
Budur-Wang)

Finite orbits of
Modg , C Xg n(r)

are Zariski dense.
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Conjectures

Conjecture (Consequence of conjecture of Esnault-Kerz,
Budur-Wang)

Finite orbits of
Modg , C Xg.n(r)

are Zariski dense.

Conjecture (Kisin, Whang)
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Conjectures

Conjecture (Consequence of conjecture of Esnault-Kerz,
Budur-Wang)

Finite orbits of
Mod, , C Xg.n (r)

are Zariski dense.
Conjecture (Kisin, Whang)
For g >, 0, the finite orbits of
Modg , C Xgn(r)?
are exactly the representations with finite image.
These two conjectures contradict each other if r > 1!
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Genus 0

Question

What are the finite orbits of

MOdO,n OXO,n(z) — {(Al; e , E 5L2 | HA

(Corlette-Simpson) Enough to classify those such that:
o (Ay,--- A, is Zariski-dense in SLy
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Genus 0

Question

What are the finite orbits of

Mody, G Xon(2) = {(A1, -+, As) € SLa(k)" | [ [ A = 1l}?

(Corlette-Simpson) Enough to classify those such that:
o (Ay,--- A, is Zariski-dense in SLy

e The corresponding local system on P!\ {xq,--- ,x,} is of
geometric origin for generic {xy, - ,x,}
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What are the finite orbits of

Mody,, C Xon(2) = {(A1, -+ ,An) € SLa(K)" | [T A = 1d}?

(Corlette-Simpson) Enough to classify those such that:
o (Ay,--- A, is Zariski-dense in SLy

e The corresponding local system on P!\ {xq,--- ,x,} is of
geometric origin for generic {xy, - ,x,}

Theorem (Lam-L-)

In this situation, if some A; has infinite order, then (A, -+, Ap)
arises via middle convolution from a finite complex reflection

group.



What does this mean?

Theorem (Lam-L-)

In this situation ((Ay,- -+ ,An) € Xo,(2) & geometric origin), if
some A; has infinite order, then (A1, --- , A,) arises via middle
convolution from a finite complex reflection group.
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What does this mean?

Theorem (Lam-L-)

In this situation ((Ay,- -+ ,An) € Xo,(2) & geometric origin), if
some A; has infinite order, then (Ay,--- , A,) arises via middle
convolution from a finite complex reflection group.

There exists smooth proper
m:Z =P\ {x1, - %}

such that:
1. p®L C Rk for some L with dimL = 1

2. Forw € P\ {xy, - ,x,}, 71 (w) is Z/aZ x G cover of
P! branched over w, x, - - - , x,, where G is a finite
complex reflection group.

24
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What does this mean?

Theorem (Lam-L-)

In this situation ((A1,--- ,A,) € Xo..(2) & geometric origin), if
some A; has infinite order, then (A, -+ , A,) arises via middle
convolution from a finite complex reflection group.

Definition
A group G C GL,(C) is a finite complex reflection group if it is

finite, acts irreducibly on C', and is generated by some g; such
that rk(g; — Id) = 1.

Finite complex reflection groups were classified by Shephard
and Todd in 1954! One infinite 3-parameter family and 34
exceptional examples, e.g. classical Weyl groups and
automorphism groups of regular polyhedra.
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Arbitrary genus

Mod, , C Xgx(r)
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Arbitrary genus

Mod,, C X, 1 (r)

Theorem (Landesman-L-)

For g > r* — 1, the finite orbits of
Modg , C Xg.n(r)

are exactly the representations with finite image.
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Arbitrary genus

Modg’n C Xg,n (I’)

Theorem (Landesman-L-)

For g > r* — 1, the finite orbits of
Modg , C Xg.n(r)
are exactly the representations with finite image.

e Kisin-Whang’s conjecture is true; Esnault-Kerz/Budur-Wang
conjecture is false.
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Arbitrary genus

Modg,, C Xg,0(r)

Theorem (Landesman-L-)

For g > r* — 1, the finite orbits of
Modg , C Xg.n(r)
are exactly the representations with finite image.

e Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang

conjecture is false.
e Proof relies on non-Abelian Hodge theory (Mochizkuki-
Simpson), input from Langlands (Esnault-Groechenig).
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Arbitrary genus

Modg,, C Xg,0(r)

Theorem (Landesman-L-)

For g > r* — 1, the finite orbits of
Modg , C Xg.n(r)
are exactly the representations with finite image.

e Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang
conjecture is false.
e Proof relies on non-Abelian Hodge theory (Mochizkuki-
Simpson), input from Langlands (Esnault-Groechenig).
e Known in rank 2 by Biswas-Gupta-Mj-Whang.
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Geometric local systems

Corollary

In the regime (in g, n, r) where these theorems hold, the
non-abelian Hodge and Tate conjectures are true for rank r
local systems on the generic curve of genus g with n punctures.
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Geometric local systems

Corollary

In the regime (in g, n, r) where these theorems hold, the
non-abelian Hodge and Tate conjectures are true for rank r
local systems on the generic curve of genus g with n punctures.

In fact we've written down all geometric local systems (under
mild assumptions).
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Conjectural picture

Conjecture (Superrigidity)
If g > 3, all irreducible local systems on .#,, are rigid.

Geometricity

Assuming Simpson’s motivicity conjecture, implies all finite
orbits (for g > 3) are “of geometric origin.”

Question

C a generic curve of genus g with n punctures. Can one write
down all local systems on C of geometric origin?
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are exactly the representations with finite image.



Theorem (Landesman-L-)

For g > r* — 1, the finite orbits of
Modg , C Xgn(r)
are exactly the representations with finite image.

For simplicity assume p irreducible.
Mod, , - [p] finite = there exists:

3 V € LocSys,(¢)

dominant
me . H el My

such that V|¢, has monodromy p.
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Main idea

Mod, , - [p] finite = there exists:

3 V € LocSys, ()

|

me % dominant %g,n

such that V|¢. has monodromy p.
Use this to show:

e V defined over Oy for K a # field.
e Forallv: Ox — C, V®, Cis unitary.

32



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

V defined over O

Esnault-Groechenig]
-

e Cohomologically rigid [

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

Esnault-Groechenig]
-

e Cohomologically rigid [ V defined over Ok

e Rigid YT forall ¢ : Ok — C,V®, C underlies C-VHS

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

Esnault-Groechenig]
-

e Cohomologically rigid [ V defined over Ok

e Rigid YT forall ¢ : Ok — C,V®, C underlies C-VHS

e Perturb m so that V|4, ® & is semistable = V ®, C
unitary.

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.

e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

Esnault-Groechenig]
-

e Cohomologically rigid [ V defined over Ok

e Rigid YT forall ¢ : Ok — C,V®, C underlies C-VHS

e Perturb m so that V|4, ® O is semistable = V ®, C
unitary.

33



The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢, has monodromy p.
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e Perturb m so that V|4, ® O is semistable = V ®, C
unitary.
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The unitary case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|4 has monodromy p.
e Assume p is unitary, r < /g + 1. Then period map
computation implies V is cohomologically rigid.

Cohomologically rigid [ V defined over Ok

Rigid YT forall ¢ : Ok — C,V®, C underlies C-VHS

Perturb m so that V|, ® & is semistable — V ®, C
unitary. Answers question of [Biswas-Heu-Hurtubise].

Esnault-Groechenig]
-

Integral and unitary implies finite image.
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The semisimple case

Mod, , - [p] finite = there exists:

€ V € LocSys,(%)

me % dominant %g,n

such that V|¢. has monodromy p.
e Now take p arbitrary semisimple. NAHT: deform V to
C-VHS V.
e Perturb m so that V'|¢, ® O is semistable = V'|¢
unitary.
e Period map computation implies V' is rigid.
e Rigidity implies V|4 = V'| , hence p is unitary.
e Non-semisimple case: “large g” form of Putman-Wieland
conjecture on Prym representations of Mod, , - - -
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Final questions

Too hard:

Which local systems are of geometric origin?

Depends on complex structure! Need a purely topological
variant.

Classification

Which local systems on X, , are of geometric origin for all
algebraic structures on %, ,2

Such local systems necessarily have finite orbit under Mod, ,.
Superrigidity

For g > 3, are all local systems on X, , with finite orbit under
Mod, , of geometric origin?

w
Ul
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Period map computation

€ V € LocSys, (%)

™

m e % dominant {%gﬂ

Rigidity Theorem (Landesman-L.-)

If V¢, is irreducible and unitary, with rk(V) < /g + 1, then V
is cohomologically rigid.
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Period map computation

¢ V € LocSys, (%)

m e % dominant (%gm

Rigidity Theorem (Landesman-L.-)

If V|, is irreducible and unitary, with rk(V) < /g + 1, then V
is cohomologically rigid.

e Need to show H°(.Z , R'r,ad(V)) = 0.
e R'r.ad(V) carries C-MHS.
e Set F =V|g ® O. Derivative of period map given by

H(E @ we) — Hom(HP(FY @ we), HY (w2?)).
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Period map computation

€ V € LocSys, (%)

™

m e % dominant (%gm

Rigidity Theorem (Landesman-L.-)

If V|, is irreducible and unitary, with rk(V) < /g + 1, then V
is cohomologically rigid.

Need to show H?(.# , R*mr.ad(V)) = 0.

R7,ad(V) carries C-MHS.

Set E = V|, ® 0. Derivative of period map given by
H(F @ we) — Hom(H(EY @ we), H(w?)).

Deformation yields non-trivial kernel, ruled out by Clifford
theory.
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Deformation to a semistable bundle
C smooth curve of genus g, V € LocSys, (C) irreducible.
Semistability theorem (Landesman-L.-)

If rk(V) < 24/g + 1, then after perturbing complex structure on
Cto C, V® Oq is semistable.
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Deformation to a semistable bundle

C smooth curve of genus g, V € LocSys, (C) irreducible.
Semistability theorem (Landesman-L.-)

If rk(V) < 24/g + 1, then after perturbing complex structure on
Cto C, V® Oq is semistable.

e Want to deform C to destroy Harder-Narasimhan filtration
HN® of F:= V ® O.
e Enough to show
Defc = H'(C, T¢) — H'(End(E)/Stabjyne ) = Obs(E, HN®)
is non-zero.
e Pass to graded pieces and Serre dualize: enough to show
HO (Hom (g, E, gl ) @ we) — HO(wE?)

non-zero for some i > j.

e Follows from Clifford theory.
38



