Local systems of geometric origin

Daniel Litt
University of Toronto

July 4, 2023

Joint with Josh Lam and Aaron Landesman

Introduction

An open problem about $r \times r$ matrices

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\mathrm{Id}\right\} / \sim
$$

An open problem about $r \times r$ matrices

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\operatorname{ld}\right\} / \sim
$$

Symmetries:
$\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)$.

An open problem about $r \times r$ matrices

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\operatorname{ld}\right\} / \sim
$$

Symmetries:

$$
\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)
$$

$\operatorname{Mod}_{0, n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}\right|$ braid relations $\rangle \subset X_{0, n}(r)$

An open problem about $r \times r$ matrices

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\mathrm{Id}\right\} / \sim
$$

Symmetries:

$$
\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)
$$

$$
\left.\operatorname{Mod}_{0, n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}\right| \text { braid relations }\right\rangle \subset X_{0, n}(r)
$$

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(r) ?
$$

Examples

1. $\left(A_{1}, \cdots, A_{n}\right)$ s.t. $\left\langle A_{1}, \cdots A_{n}\right\rangle \subset S L_{r}(k)$ is finite

Examples

1. $\left(A_{1}, \cdots, A_{n}\right)$ s.t. $\left\langle A_{1}, \cdots A_{n}\right\rangle \subset S L_{r}(k)$ is finite 2. Rigid tuples:

Definition

$\left(A_{1}, \cdots, A_{n}\right)$ is rigid if for all $\left(A_{1}^{\prime}, \cdots, A_{n}^{\prime}\right)$ with $A_{i} \sim A_{i}^{\prime}$ for all i, we have $\left(A_{1}, \cdots, A_{n}\right) \sim\left(A_{1}^{\prime}, \cdots A_{n}^{\prime}\right)$.

Examples

1. $\left(A_{1}, \cdots, A_{n}\right)$ s.t. $\left\langle A_{1}, \cdots A_{n}\right\rangle \subset S L_{r}(k)$ is finite
2. Rigid tuples:

Definition

$\left(A_{1}, \cdots, A_{n}\right)$ is rigid if for all $\left(A_{1}^{\prime}, \cdots, A_{n}^{\prime}\right)$ with $A_{i} \sim A_{i}^{\prime}$ for all i, we have $\left(A_{1}, \cdots, A_{n}\right) \sim\left(A_{1}^{\prime}, \cdots A_{n}^{\prime}\right)$.

Classified by Katz ('96)

Examples

1. $\left(A_{1}, \cdots, A_{n}\right)$ s.t. $\left\langle A_{1}, \cdots A_{n}\right\rangle \subset S L_{r}(k)$ is finite
2. Rigid tuples:

Definition

$\left(A_{1}, \cdots, A_{n}\right)$ is rigid if for all $\left(A_{1}^{\prime}, \cdots, A_{n}^{\prime}\right)$ with $A_{i} \sim A_{i}^{\prime}$ for all i, we have $\left(A_{1}, \cdots, A_{n}\right) \sim\left(A_{1}^{\prime}, \cdots A_{n}^{\prime}\right)$.

Classified by Katz ('96)

3. Otherwise, open except for $r=2, n=3$ (all rigid), $n=4$ (Lisovyy-Tykhyy), $n=5$
(Calligaris-Mazzocco, Tykhyy),

Examples

1. $\left(A_{1}, \cdots, A_{n}\right)$ s.t. $\left\langle A_{1}, \cdots A_{n}\right\rangle \subset S L_{r}(k)$ is finite
2. Rigid tuples:

Definition

$\left(A_{1}, \cdots, A_{n}\right)$ is rigid if for all $\left(A_{1}^{\prime}, \cdots, A_{n}^{\prime}\right)$ with $A_{i} \sim A_{i}^{\prime}$ for all i, we have $\left(A_{1}, \cdots, A_{n}\right) \sim\left(A_{1}^{\prime}, \cdots A_{n}^{\prime}\right)$.

Classified by Katz ('96)

3. Otherwise, open except for $r=2, n=3$ (all rigid), $n=4$ (Lisovyy-Tykhyy), $n=5$
(Calligaris-Mazzocco, Tykhyy), using computer \& effective Manin-Mumford for tori

Rigid tuples

Rigid tuples

$$
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle
$$

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \backslash \prod \gamma_{i}=\mathrm{id}\right\rangle \\
x_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
x_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

rigid tuples $=$ isolated points

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$,

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$, with $\rho\left(\gamma_{i}\right)$ quasi-unipotent (all eigenvalues roots of unity),

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$, with $\rho\left(\gamma_{i}\right)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$, with $\rho\left(\gamma_{i}\right)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^{1} \pi_{*} k$ for some \mathbb{L} with $\operatorname{dim} \mathbb{L}=1$

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$, with $\rho\left(\gamma_{i}\right)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^{1} \pi_{*} k$ for some \mathbb{L} with $\operatorname{dim} \mathbb{L}=1$
2. For $w \in \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}, \pi^{-1}(w)$ is $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ cover of \mathbb{P}^{1} branched over w, x_{1}, \cdots, x_{n}.

Rigid tuples

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{0, n}\right):=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \prod \gamma_{i}=\mathrm{id}\right\rangle \\
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
\end{gathered}
$$

Theorem (Riemann, $r=2$)
Given a rigid tuple $[\rho] \in X_{0, n}(2)$, with $\rho\left(\gamma_{i}\right)$ quasi-unipotent (all eigenvalues roots of unity), there exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^{1} \pi_{*} k$ for some \mathbb{L} with $\operatorname{dim} \mathbb{L}=1$
2. For $w \in \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}, \pi^{-1}(w)$ is $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ cover of \mathbb{P}^{1} branched over w, x_{1}, \cdots, x_{n}.
(Katz '96) For all r, iterated version of this: "middle convolution"

Rigid tuples

Upshot (Katz '96)
All rigid tuples $\left(A_{1}, \cdots, A_{n}\right)$ with A_{i} quasi-unipotent (eigenvalues are roots of unity) are of geometric origin and have been algorithmically classified.

Rigid tuples

Upshot (Katz '96)
All rigid tuples $\left(A_{1}, \cdots, A_{n}\right)$ with A_{i} quasi-unipotent (eigenvalues are roots of unity) are of geometric origin and have been algorithmically classified.

Question

What about more general finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(r) ?
$$

Not all finite orbits are rigid tuples

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc}
1+x_{2} x_{3} / x_{1} & -x_{2}^{2} / x_{1} \\
x_{3}^{2} / x_{1} & 1-x_{2} x_{3} / x_{1}
\end{array}\right), A_{2}=\left(\begin{array}{cc}
1 & -x_{1} \\
0 & 1
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
x_{1} & 1
\end{array}\right) \\
A_{4}=\left(A_{1} A_{2} A_{3}\right)^{-1}
\end{gathered}
$$

where

$$
x_{1}=2 \cos \left(\frac{\pi(\alpha+\beta)}{2}\right), x_{2}=2 \sin \left(\frac{\pi \alpha}{2}\right), x_{3}=2 \sin \left(\frac{\pi \beta}{2}\right)
$$

for $\alpha, \beta \in \mathbb{Q}$.

Geometric Point of View

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\operatorname{ld}\right\} / \sim
$$

Symmetries:

$$
\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)
$$

$$
\operatorname{Mod}_{0, n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}\right\rangle \subset X_{0, n}(r)
$$

Geometric Point of View

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\operatorname{ld}\right\} / \sim
$$

Symmetries:
$\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)$.

$$
\operatorname{Mod}_{0, n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}\right\rangle \propto X_{0, n}(r)
$$

Geometry:

$$
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
$$

Geometric Point of View

$$
X_{0, n}(r)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{r}(k)^{n} \mid \prod A_{i}=\mathrm{Id}\right\} / \sim
$$

Symmetries:
$\sigma_{i}:\left(A_{1}, A_{2}, \cdots, A_{n}\right) \mapsto\left(A_{1}, \cdots, A_{i} A_{i+1} A_{i}^{-1}, A_{i}, \cdots, A_{n}\right)$.

$$
\operatorname{Mod}_{0, n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1}\right\rangle \subset X_{0, n}(r)
$$

Geometry:

$$
X_{0, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0, n}\right), S L_{r}(k)\right) / \sim
$$

$\operatorname{Mod}_{0, n}=\pi_{0}\left(\operatorname{Homeo}^{+}\left(\Sigma_{0, n}\right)\right)$

$$
=\pi_{1}\left(\mathscr{M}_{0, n} / S_{n}\right)
$$

$=$ "spherical braid group on n strands"

Natural generalization

$$
X_{g, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g, n}\right), S L_{r}(k)\right) / \sim
$$

Natural generalization

$$
X_{g, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g, n}\right), S L_{r}(k)\right) / \sim
$$

$$
\begin{aligned}
\operatorname{Mod}_{g, n} & =\pi_{0}\left(\operatorname{Homeo}^{+}\left(\Sigma_{g, n}\right)\right) \\
& =\pi_{1}\left(\mathscr{M}_{g, n} / S_{n}\right) \\
& =\text { "mapping class group of } \Sigma_{g, n} "
\end{aligned}
$$

$$
X_{g, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g, n}\right), S L_{r}(k)\right) / \sim
$$

$$
\begin{aligned}
\operatorname{Mod}_{g, n} & =\pi_{0}\left(\operatorname{Homeo}^{+}\left(\Sigma_{g, n}\right)\right) \\
& =\pi_{1}\left(\mathscr{M}_{g, n} / S_{n}\right) \\
& =\text { "mapping class group of } \Sigma_{g, n} "
\end{aligned}
$$

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

studied by Eskin, Wright, \cdots \& Goldman, Previte-Xia, . . .

Natural generalization

$$
X_{g, n}(r)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g, n}\right), S L_{r}(k)\right) / \sim
$$

$$
\begin{aligned}
\operatorname{Mod}_{g, n} & =\pi_{0}\left(\operatorname{Homeo}^{+}\left(\Sigma_{g, n}\right)\right) \\
& =\pi_{1}\left(\mathscr{M}_{g, n} / S_{n}\right) \\
& =\text { "mapping class group of } \Sigma_{g, n} "
\end{aligned}
$$

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

studied by Eskin, Wright, • . \& Goldman, Previte-Xia, •. .

Question

What are the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

Some motivation and conjectures

Where does this question appear?

Question

What are the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

Where does this question appear?

Question

What are the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

1. Kisin et al's approach to Grothendieck-Katz p-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)

Where does this question appear?

Question

What are the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

1. Kisin et al's approach to Grothendieck-Katz p-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)
2. Bourgain-Gamburd-Sarnak \& Chen: strong approximation for $X_{0,4}(2)$

Where does this question appear?

Question

What are the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

1. Kisin et al's approach to Grothendieck-Katz p-curvature conjecture (Sinz, Papaïoannou, Menzies, Shankar, Patel-Shankar-Whang)
2. Bourgain-Gamburd-Sarnak \& Chen: strong approximation for $X_{0,4}(2)$
Whang: partial results for $X_{g, n}(r)$

A conjecture

Conjecture (Kisin, Whang)
For $g \gg_{r} 0$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

are exactly the representations with finite image.

Where does this question appear?

3. Algebraic solutions to:

Where does this question appear?

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t} \\
& +\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
\end{aligned}
$$

Where does this question appear?

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t} \\
& +\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
\end{aligned}
$$

are finite orbits of $\operatorname{Mod}_{0,4} \subset X_{0,4}(2)$

Where does this question appear?

3. Algebraic solutions to:

Painlevé VI equation (R. Fuchs, 1905)

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t} \\
& +\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
\end{aligned}
$$

are finite orbits of $\operatorname{Mod}_{0,4} \bigcirc X_{0,4}(2)$ (classified by Lysovyy-Tykhyy (2014), building on work of Schwarz, Poincaré, . . . Hitchin, Boalch, Doran, Andreev, Kitaev, Dubrovin-Mazzocco, ...)

Where does this question appear?

4. Algebraic solutions to:

Schlesinger system, 1912

$$
\left\{\begin{array}{l}
\frac{d A_{i}}{d \lambda_{j}}=\frac{\left[A_{i}, A_{j}\right]}{\lambda_{i}-\lambda_{j}} \quad i \neq j \\
\frac{d A_{i}}{d \lambda_{i}}=-\sum_{j \neq i} \frac{\left[A_{i}, A_{j}\right]}{\lambda_{i}-\lambda_{j}}
\end{array}\right.
$$

with $A_{i} \in \mathfrak{s l}_{r}$, are finite orbits of $\operatorname{Mod}_{0, n} \subset X_{0, n}(r)$

Where does this question appear?

5. Geometric local systems

Where does this question appear?

5. Geometric local systems

Definition
X : smooth algebraic variety
\mathbb{V} : irreducible k-local system on X

Where does this question appear?

5. Geometric local systems

Definition
X : smooth algebraic variety
\mathbb{V} : irreducible k-local system on X
\mathbb{V} is of geometric origin if $\exists U \subset X$ dense open and

$$
\pi: Y \rightarrow U
$$

smooth proper such that $\left.\mathbb{V}\right|_{\cup} \subset R^{i} \pi_{*} k$ for some i.

Where does this question appear?

5. Geometric local systems

Definition
X : smooth algebraic variety
\mathbb{V} : irreducible k-local system on X
\mathbb{V} is of geometric origin if $\exists U \subset X$ dense open and

$$
\pi: Y \rightarrow U
$$

smooth proper such that $\left.\mathbb{V}\right|_{\cup} \subset R^{i} \pi_{*} k$ for some i.
Question
Which local systems are of geometric origin?

Conjectures

Question

Which local systems are of geometric origin?

Conjectures

Question

Which local systems are of geometric origin?
Conjecture (Non-abelian Hodge conjecture, Simpson)
(X smooth $/ \mathbb{C}$)

Conjectures

Question

Which local systems are of geometric origin?
Conjecture (Non-abelian Hodge conjecture, Simpson)
(X smooth $/ \mathbb{C}$) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Conjectures

Question

Which local systems are of geometric origin?
Conjecture (Non-abelian Hodge conjecture, Simpson)
(X smooth $/ \mathbb{C}$) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Conjecture (Non-abelian Tate conjecture, Fontain-Mazur/Petrov) (X smooth/f.g. field F with $\operatorname{char}(F) \neq \ell$)

Conjectures

Question

Which local systems are of geometric origin?
Conjecture (Non-abelian Hodge conjecture, Simpson)
(X smooth $/ \mathbb{C}$) A complex local system on X is of geometric origin if and only if it underlies an integral, polarizable variation of Hodge structure.

Conjecture (Non-abelian Tate conjecture, Fontain-Mazur/Petrov)
(X smooth/f.g. field F with char $(F) \neq \ell$) An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ is of geometric origin if and only if it has finite orbit under the absolute Galois group of F.

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F^{\prime} / F.

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F^{\prime} / F.
- Hence $R^{i} \pi_{*} \mathbb{Q}_{\ell}$ fixed (up to isomorphism) by absolute Galois group of F^{\prime}.

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F^{\prime} / F.
- Hence $R^{i} \pi_{*} \mathbb{Q}_{\ell}$ fixed (up to isomorphism) by absolute Galois group of F^{\prime}.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures),

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F^{\prime} / F.
- Hence $R^{i} \pi_{*} \mathbb{Q}_{\ell}$ fixed (up to isomorphism) by absolute Galois group of F^{\prime}.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures), then $[\mathbb{V}] \in X_{g, n}(r)$

Non-abelian Tate conjecture

Proposition (Easy direction of non-abelian Tate conjecture)
An ℓ-adic local system \mathbb{V} on $X_{\bar{F}}$ of geometric origin has finite orbit under the absolute Galois group of F.

"Proof".

- $\exists \pi: Y \rightarrow X_{\bar{F}}$ smooth proper so that \mathbb{V} appears in $R^{i} \pi_{*} \mathbb{Q}_{\ell}$.
- Y, π defined over finite extension F^{\prime} / F.
- Hence $R^{i} \pi_{*} \mathbb{Q}_{\ell}$ fixed (up to isomorphism) by absolute Galois group of F^{\prime}.

Corollary

If \mathbb{V} is a local system of geometric origin on a generic curve C (of genus g with n punctures), then $[\mathbb{V}] \in X_{g, n}(r)$ has finite orbit under $\operatorname{Mod}_{g, n}$.

What do local systems of geometric origin look like?

What do local systems of geometric origin look like?

Conjecture (Esnault-Kerz, Budur-Wang)
Z smooth variety. Then local systems of geometric origin are Zariski-dense in the space of all local systems on Z.

What do local systems of geometric origin look like?

Conjecture (Esnault-Kerz, Budur-Wang)
Z smooth variety. Then local systems of geometric origin are Zariski-dense in the space of all local systems on Z.

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are Zariski dense.

Conjectures

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are Zariski dense.

Conjectures

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are Zariski dense.
Conjecture (Kisin, Whang)
For $g \gg_{r} 0$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

are exactly the representations with finite image.

Conjectures

Conjecture (Consequence of conjecture of Esnault-Kerz, Budur-Wang)

Finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are Zariski dense.
Conjecture (Kisin, Whang)
For $g \gg_{r} 0$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r) ?
$$

are exactly the representations with finite image.
These two conjectures contradict each other if $r>1$!

Some results

Genus 0

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(2)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{2}(k)^{n} \mid \prod A_{i}=I d\right\} ?
$$

Genus 0

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(2)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{2}(k)^{n} \mid \prod A_{i}=I d\right\} ?
$$

(Corlette-Simpson) Enough to classify those such that:

Genus 0

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(2)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{2}(k)^{n} \mid \prod A_{i}=I d\right\} ?
$$

(Corlette-Simpson) Enough to classify those such that:

- $\left\langle A_{1}, \cdots, A_{n}\right\rangle$ is Zariski-dense in $S L_{2}$

Genus 0

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(2)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{2}(k)^{n} \mid \prod A_{i}=I d\right\} ?
$$

(Corlette-Simpson) Enough to classify those such that:

- $\left\langle A_{1}, \cdots, A_{n}\right\rangle$ is Zariski-dense in $S L_{2}$
- The corresponding local system on $\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}$ is of geometric origin for generic $\left\{x_{1}, \cdots, x_{n}\right\}$

Genus 0

Question

What are the finite orbits of

$$
\operatorname{Mod}_{0, n} \subset X_{0, n}(2)=\left\{\left(A_{1}, \cdots, A_{n}\right) \in S L_{2}(k)^{n} \mid \prod A_{i}=I d\right\} ?
$$

(Corlette-Simpson) Enough to classify those such that:

- $\left\langle A_{1}, \cdots, A_{n}\right\rangle$ is Zariski-dense in $S L_{2}$
- The corresponding local system on $\mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}$ is of geometric origin for generic $\left\{x_{1}, \cdots, x_{n}\right\}$

Theorem (Lam-L-)
In this situation, if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin $)$, if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^{1} \pi_{*} k$ for some \mathbb{L} with $\operatorname{dim} \mathbb{L}=1$

What does this mean?

Theorem (Lam-L-)

In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

There exists smooth proper

$$
\pi: Z \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}
$$

such that:

1. $\rho \otimes \mathbb{L} \subset R^{1} \pi_{*} k$ for some \mathbb{L} with $\operatorname{dim} \mathbb{L}=1$
2. For $w \in \mathbb{P}^{1} \backslash\left\{x_{1}, \cdots, x_{n}\right\}, \pi^{-1}(w)$ is $\mathbb{Z} / a \mathbb{Z} \times G$ cover of \mathbb{P}^{1} branched over w, x_{1}, \cdots, x_{n}, where G is a finite complex reflection group.

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset G L_{r}(\mathbb{C})$ is a finite complex reflection group if it is finite, acts irreducibly on \mathbb{C}^{r}, and is generated by some g_{i} such that $\operatorname{rk}\left(g_{i}-\mathrm{Id}\right)=1$.

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset G L_{r}(\mathbb{C})$ is a finite complex reflection group if it is finite, acts irreducibly on \mathbb{C}^{r}, and is generated by some g_{i} such that $\operatorname{rk}\left(g_{i}-\mathrm{Id}\right)=1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954!

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset G L_{r}(\mathbb{C})$ is a finite complex reflection group if it is finite, acts irreducibly on \mathbb{C}^{r}, and is generated by some g_{i} such that $\operatorname{rk}\left(g_{i}-\mathrm{Id}\right)=1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954! One infinite 3-parameter family and 34 exceptional examples,

What does this mean?

Theorem (Lam-L-)
In this situation $\left(\left(A_{1}, \cdots, A_{n}\right) \in X_{0, n}(2) \&\right.$ geometric origin), if some A_{i} has infinite order, then $\left(A_{1}, \cdots, A_{n}\right)$ arises via middle convolution from a finite complex reflection group.

Definition

A group $G \subset G L_{r}(\mathbb{C})$ is a finite complex reflection group if it is finite, acts irreducibly on \mathbb{C}^{r}, and is generated by some g_{i} such that $\operatorname{rk}\left(g_{i}-\mathrm{Id}\right)=1$.

Finite complex reflection groups were classified by Shephard and Todd in 1954! One infinite 3-parameter family and 34 exceptional examples, e.g. classical Weyl groups and automorphism groups of regular polyhedra.

Arbitrary genus

$\operatorname{Mod}_{g, n} \subset X_{g, n}(r)$

Arbitrary genus

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \bigcirc X_{g, n}(r)
$$

are exactly the representations with finite image.

Arbitrary genus

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \bigcirc X_{g, n}(r)
$$

are exactly the representations with finite image.

- Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.

Arbitrary genus

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \bigcirc X_{g, n}(r)
$$

are exactly the representations with finite image.

- Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.
- Proof relies on non-Abelian Hodge theory (MochizkukiSimpson), input from Langlands (Esnault-Groechenig).

Arbitrary genus

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \bigcirc X_{g, n}(r)
$$

are exactly the representations with finite image.

- Kisin-Whang's conjecture is true; Esnault-Kerz/Budur-Wang conjecture is false.
- Proof relies on non-Abelian Hodge theory (MochizkukiSimpson), input from Langlands (Esnault-Groechenig).
- Known in rank 2 by Biswas-Gupta-Mj-Whang.

Geometric local systems

Corollary
In the regime (in g, n, r) where these theorems hold, the non-abelian Hodge and Tate conjectures are true for rank r local systems on the generic curve of genus g with n punctures.

Geometric local systems

Corollary
In the regime (in g, n, r) where these theorems hold, the non-abelian Hodge and Tate conjectures are true for rank r local systems on the generic curve of genus g with n punctures.

In fact we've written down all geometric local systems (under mild assumptions).

Conjectural picture

Conjectural picture

Conjectural picture

Conjectural picture

Conjectural picture

Conjectural picture

Conjecture (Superrigidity)
If $g \geq 3$, all irreducible local systems on $\mathscr{M}_{g, n}$ are rigid.

Conjectural picture

Conjecture (Superrigidity)
If $g \geq 3$, all irreducible local systems on $\mathscr{M}_{g, n}$ are rigid.

Geometricity

Assuming Simpson's motivicity conjecture, implies all finite orbits (for $g \geq 3$) are "of geometric origin."

Conjectural picture

Conjecture (Superrigidity)
If $g \geq 3$, all irreducible local systems on $\mathscr{M}_{g, n}$ are rigid.

Geometricity
Assuming Simpson's motivicity conjecture, implies all finite orbits (for $g \geq 3$) are "of geometric origin."

Question

C a generic curve of genus g with n punctures. Can one write down all local systems on C of geometric origin?

Proof idea

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are exactly the representations with finite image.

Theorem (Landesman-L-)
For $g>r^{2}-1$, the finite orbits of

$$
\operatorname{Mod}_{g, n} \subset X_{g, n}(r)
$$

are exactly the representations with finite image.
For simplicity assume ρ irreducible. $\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

Main idea

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

Main idea

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.
Use this to show:

Main idea

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.
Use this to show:

- \mathbb{V} defined over \mathscr{O}_{K} for K a $\#$ field.

Main idea

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.
Use this to show:

- \mathbb{V} defined over \mathscr{O}_{K} for K a $\#$ field.
- For all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ is unitary.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{[\text { Esnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{\text { Essnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}
- Rigid $\stackrel{\text { NAHT }}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies \mathbb{C}-VHS

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{[\text { Esnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}
- Rigid $\stackrel{\text { NAHT }}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies \mathbb{C}-VHS
- Perturb m so that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\Longrightarrow \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{\text { [Esnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}
- Rigid $\stackrel{\text { NAHT }}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies \mathbb{C}-VHS
- Perturb m so that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\Longrightarrow \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{[\text { Esnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}
- Rigid $\stackrel{\text { NAHT }}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies \mathbb{C}-VHS
- Perturb m so that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\Longrightarrow \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary.
- Integral and unitary implies finite image.

The unitary case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Assume ρ is unitary, $r<\sqrt{g+1}$. Then period map computation implies \mathbb{V} is cohomologically rigid.
- Cohomologically rigid $\stackrel{[\text { Esnault-Groechenig] }}{\Longrightarrow} \mathbb{V}$ defined over \mathscr{O}_{K}
- Rigid $\stackrel{\text { NAHT }}{\Longrightarrow}$ for all $\iota: \mathscr{O}_{K} \hookrightarrow \mathbb{C}, \mathbb{V} \otimes_{\iota} \mathbb{C}$ underlies \mathbb{C}-VHS
- Perturb m so that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\Longrightarrow \mathbb{V} \otimes_{\iota} \mathbb{C}$ unitary. Answers question of [Biswas-Heu-Hurtubise].
- Integral and unitary implies finite image.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.
- Perturb m so that $\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\left.\Longrightarrow \mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$ unitary.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

$$
\overbrace{m \in \mathscr{M} \xrightarrow[\text { dominant }]{\mathscr{C}} \mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})}^{\mathscr{M}_{\mathrm{g}, n}}
$$

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.
- Perturb m so that $\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\left.\Longrightarrow \mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$ unitary.
- Period map computation implies \mathbb{V}^{\prime} is rigid.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

$$
\downarrow_{m \in \mathscr{M} \xrightarrow[\text { dominant }]{\mathscr{C}} \mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})}^{\mathscr{M}_{g, n}}
$$

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.
- Perturb m so that $\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\left.\Longrightarrow \mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$ unitary.
- Period map computation implies \mathbb{V}^{\prime} is rigid.
- Rigidity implies $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}=\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$, hence ρ is unitary.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

$$
\downarrow_{m \in \mathscr{M} \xrightarrow[\text { dominant }]{\mathscr{C}} \mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})}^{\mathscr{M}_{g, n}}
$$

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.
- Perturb m so that $\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\left.\Longrightarrow \mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$ unitary.
- Period map computation implies \mathbb{V}^{\prime} is rigid.
- Rigidity implies $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}=\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$, hence ρ is unitary.

The semisimple case

$\operatorname{Mod}_{g, n} \cdot[\rho]$ finite \Longrightarrow there exists:

$$
\downarrow_{m \in \mathscr{M} \xrightarrow[\text { dominant }]{\mathscr{C}} \mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})}^{M_{g, n}}
$$

such that $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ has monodromy ρ.

- Now take ρ arbitrary semisimple. NAHT: deform \mathbb{V} to \mathbb{C}-VHS \mathbb{V}^{\prime}.
- Perturb m so that $\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$ is semistable $\left.\Longrightarrow \mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$ unitary.
- Period map computation implies \mathbb{V}^{\prime} is rigid.
- Rigidity implies $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}=\left.\mathbb{V}^{\prime}\right|_{\mathscr{C}_{m}}$, hence ρ is unitary.
- Non-semisimple case: "large $g^{\prime \prime}$ form of Putman-Wieland conjecture on Prym representations of $\operatorname{Mod}_{g, n} \ldots$

Final questions

Final questions

Too hard:
 Which local systems are of geometric origin?

Final questions

Too hard:

Which local systems are of geometric origin?
Depends on complex structure! Need a purely topological variant.

Final questions

Too hard:
Which local systems are of geometric origin?
Depends on complex structure! Need a purely topological variant.

Classification
Which local systems on $\Sigma_{g, n}$ are of geometric origin for all algebraic structures on $\Sigma_{g, n}$?

Final questions

Too hard:
Which local systems are of geometric origin?
Depends on complex structure! Need a purely topological variant.

Classification
Which local systems on $\Sigma_{g, n}$ are of geometric origin for all algebraic structures on $\Sigma_{g, n}$?

Final questions

Too hard:
Which local systems are of geometric origin?
Depends on complex structure! Need a purely topological variant.

Classification
Which local systems on $\Sigma_{g, n}$ are of geometric origin for all algebraic structures on $\Sigma_{g, n}$?

Such local systems necessarily have finite orbit under $\operatorname{Mod}_{g, n}$.

Final questions

Too hard:
Which local systems are of geometric origin?
Depends on complex structure! Need a purely topological variant.

Classification
Which local systems on $\Sigma_{g, n}$ are of geometric origin for all algebraic structures on $\Sigma_{g, n}$?

Such local systems necessarily have finite orbit under $\operatorname{Mod}_{g, n}$.
Superrigidity
For $g \geq 3$, are all local systems on $\Sigma_{g, n}$ with finite orbit under $\operatorname{Mod}_{g, n}$ of geometric origin?

Appendix

Period map computation

Rigidity Theorem (Landesman-L.-)
If $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ is irreducible and unitary, with $\operatorname{rk}(\mathbb{V})<\sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

Period map computation

Rigidity Theorem (Landesman-L.-)
If $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ is irreducible and unitary, with $\operatorname{rk}(\mathbb{V})<\sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^{0}\left(\mathscr{M}, R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})\right)=0$.

Period map computation

Rigidity Theorem (Landesman-L.-)
If $\left.\mathbb{V}\right|_{\mathscr{C}_{m}}$ is irreducible and unitary, with $\operatorname{rk}(\mathbb{V})<\sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^{0}\left(\mathscr{M}, R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})\right)=0$.
- $R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})$ carries \mathbb{C}-MHS.

Period map computation

$$
\left.\right|_{m \in \mathscr{M}} ^{\mathscr{C}} \underset{\text { dominant }}{\mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})} \mathscr{M}_{g, n}
$$

Rigidity Theorem (Landesman-L.-)

If $\left.\mathbb{V}\right|_{\mathscr{O}_{m}}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V})<\sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^{0}\left(\mathscr{M}, R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})\right)=0$.
- $R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})$ carries \mathbb{C}-MHS.
- Set $E=\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$. Derivative of period map given by

$$
H^{0}\left(E \otimes \omega_{C}\right) \rightarrow \operatorname{Hom}\left(H^{0}\left(E^{\vee} \otimes \omega_{C}\right), H^{0}\left(\omega_{C}^{\otimes 2}\right)\right) .
$$

Period map computation

$$
\left.\right|_{m \in \mathscr{M}} ^{\mathscr{C}} \underset{\text { dominant }}{\mathbb{V} \in \operatorname{LocSys}_{R}(\mathscr{C})} \mathscr{M}_{g, n}
$$

Rigidity Theorem (Landesman-L.-)

If $\left.\mathbb{V}\right|_{\mathscr{\vartheta}_{m}}$ is irreducible and unitary, with $\mathrm{rk}(\mathbb{V})<\sqrt{g+1}$, then \mathbb{V} is cohomologically rigid.

- Need to show $H^{0}\left(\mathscr{M}, R^{1} \pi_{*} \operatorname{ad}(\mathbb{V})\right)=0$.
- $R^{1} \pi_{*} \mathrm{ad}(\mathbb{V})$ carries \mathbb{C}-MHS.
- Set $E=\left.\mathbb{V}\right|_{\mathscr{C}_{m}} \otimes \mathscr{O}$. Derivative of period map given by

$$
H^{0}\left(E \otimes \omega_{C}\right) \rightarrow \operatorname{Hom}\left(H^{0}\left(E^{\vee} \otimes \omega_{C}\right), H^{0}\left(\omega_{C}^{\otimes 2}\right)\right) .
$$

- Deformation yields non-trivial kernel, ruled out by Clifford theory.

Deformation to a semistable bundle

C smooth curve of genus $g, \mathbb{V} \in \operatorname{LocSys}_{r}(C)$ irreducible.

Semistability theorem (Landesman-L.-)
If $\operatorname{rk}(\mathbb{V})<2 \sqrt{g+1}$, then after perturbing complex structure on C to $C^{\prime}, \mathbb{V} \otimes \mathscr{O}_{C^{\prime}}$ is semistable.

Deformation to a semistable bundle

C smooth curve of genus $g, \mathbb{V} \in \operatorname{LocSys}_{r}(C)$ irreducible.
Semistability theorem (Landesman-L.-)
If $\mathrm{rk}(\mathbb{V})<2 \sqrt{g+1}$, then after perturbing complex structure on C to $C^{\prime}, \mathbb{V} \otimes \mathscr{O}_{C^{\prime}}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration $H N^{\bullet}$ of $E:=\mathbb{V} \otimes \mathscr{O}_{C}$.

Deformation to a semistable bundle

C smooth curve of genus $g, \mathbb{V} \in \operatorname{LocSys}_{r}(C)$ irreducible.
Semistability theorem (Landesman-L.-)
If $\mathrm{rk}(\mathbb{V})<2 \sqrt{g+1}$, then after perturbing complex structure on C to $C^{\prime}, \mathbb{V} \otimes \mathscr{O}_{C^{\prime}}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration $H N^{\bullet}$ of $E:=\mathbb{V} \otimes \mathscr{O}_{C}$.
- Enough to show

$$
\operatorname{Def}_{C}=H^{1}\left(C, T_{C}\right) \rightarrow H^{1}\left(\operatorname{End}(E) / \operatorname{Stab}_{H N^{\bullet}}\right)=\operatorname{Obs}\left(E, H N^{\bullet}\right)
$$

is non-zero.

Deformation to a semistable bundle

C smooth curve of genus $g, \mathbb{V} \in \operatorname{LocSys}_{r}(C)$ irreducible.
Semistability theorem (Landesman-L.-)
If $r k(\mathbb{V})<2 \sqrt{g+1}$, then after perturbing complex structure on C to $C^{\prime}, \mathbb{V} \otimes \mathscr{O}_{C^{\prime}}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration $H N^{\bullet}$ of $E:=\mathbb{V} \otimes \mathscr{O}_{C}$.
- Enough to show

$$
\operatorname{Def}_{C}=H^{1}\left(C, T_{C}\right) \rightarrow H^{1}\left(\operatorname{End}(E) / \operatorname{Stab}_{H N^{\bullet}}\right)=\operatorname{Obs}\left(E, H N^{\bullet}\right)
$$

is non-zero.

- Pass to graded pieces and Serre dualize: enough to show

$$
H^{0}\left(\operatorname{Hom}\left(\operatorname{gr}_{H N}^{i} E, \operatorname{gr}_{H N}^{j} E\right) \otimes \omega_{C}\right) \rightarrow H^{0}\left(\omega_{C}^{\otimes 2}\right)
$$

non-zero for some $i>j$.

Deformation to a semistable bundle

C smooth curve of genus $g, \mathbb{V} \in \operatorname{LocSys}_{r}(C)$ irreducible.
Semistability theorem (Landesman-L.-)
If $\mathrm{rk}(\mathbb{V})<2 \sqrt{g+1}$, then after perturbing complex structure on C to $C^{\prime}, \mathbb{V} \otimes \mathscr{O}_{C^{\prime}}$ is semistable.

- Want to deform C to destroy Harder-Narasimhan filtration $H N^{\bullet}$ of $E:=\mathbb{V} \otimes \mathscr{O}_{C}$.
- Enough to show
$\operatorname{Def}_{C}=H^{1}\left(C, T_{C}\right) \rightarrow H^{1}\left(\operatorname{End}(E) / \operatorname{Stab}_{H N^{\bullet}}\right)=\operatorname{Obs}\left(E, H N^{\bullet}\right)$
is non-zero.
- Pass to graded pieces and Serre dualize: enough to show

$$
H^{0}\left(\operatorname{Hom}\left(\operatorname{gr}_{H N}^{i} E, \operatorname{gr}_{H N}^{j} E\right) \otimes \omega_{C}\right) \rightarrow H^{0}\left(\omega_{C}^{\otimes 2}\right)
$$

non-zero for some $i>j$.

- Follows from Clifford theory.

