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ABSTRACT. We show that the minimum rank of a non-isotrivial geomet-
ric local system on a suitably general n-pointed curve of genus g, with
unipotent monodromy at infinity, is at least 2

√
g + 1. The main input is an

analysis of stability properties of flat vector vector bundles under isomon-
odromic deformation, which additionally answers a question of Biswas,
Heu, and Hurtubise.

1. INTRODUCTION

1.1. Overview. We work over the complex numbers C. The main result
of this paper, Theorem 1.2.4, is that an analytically very general n-pointed
curve of genus g does not carry any non-isotrivial polarizable Z-variations
of Hodge structure with unipotent monodromy around the marked points,
of rank less than 2

√
g + 1. In particular, an analytically very general smooth

proper curve of genus g carries no geometric local systems of rank less than
2
√

g + 1 with infinite monodromy, as we show in Corollary 1.2.6. This is a
strong restriction on the topology of smooth proper maps to an analytically
very general curve. (See Definition 1.2.2 for the definition of “analytically
very general.”)

These results rely on an analysis of stability properties of isomonodromic
deformations of flat vector bundles with regular singularities, and require
correcting a number of errors in the literature on this topic.

Let C0 be the central fiber of a family of curves C → ∆ with ∆ a contractible
domain, and let (E0,∇0) be a flat vector bundle on C0. Recall that, loosely
speaking, the isomonodromic deformation of (E0,∇0) is the deformation
(E ,∇) of (E0,∇0) to C /∆, such that the monodromy of the connection is
constant.

In Corollary 1.3.3, we construct a flat vector bundle on a smooth proper
curve over C, whose isomonodromic deformations to a nearby curve are
never semistable. (See Definition 2.2.4 for precise definitions.) The con-
struction arises from the “Kodaira-Parshin trick,” and contradicts earlier
claimed theorems of Biswas, Heu, and Hurtubise ([BHH16, Theorem 1.3],
[BHH21, Theorem 1.3], and [BHH20, Theorem 1.2]), which imply that such
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a construction is impossible. See Remark 4.1.9 for a discussion of the errors
in those papers.

As a complement to this example, we show in Theorem 1.3.4 that any
logarithmic flat vector bundle admits an isomonodromic deformation to a
nearby curve which is close to semistable, in a suitable sense, and moreover is
semistable if the rank is small compared to the genus of the curve. While our
results contradict those of [BHH16, BHH21, BHH20], our methods owe those
papers a substantial debt. Biswas, Heu, and Hurtubise pitch the question of
isomonodromically deforming a vector bundle to a semistable vector bundle
(see Question 1.3.1) as an analogue of Hilbert’s 21st problem, also known as
the Riemann-Hilbert problem.

This semistability property is also the main input to the above mentioned
Hodge theoretic results. The applications to polarizable variations of Hodge
structures come from the fact that flat vector bundles underlying polarizable
variations are rarely semistable, due to well-known curvature properties of
Hodge bundles.

1.2. Main Hodge-theoretic results. For convenience, throughout the paper,
out main results will primarily be stated for hyperbolic curves.

Definition 1.2.1. Let C be a curve over C of genus g and D ⊂ C a reduced
effective divisor of degree n. Call (C, D) hyperbolic if C is a smooth proper
connected curve and either g ≥ 2, g = 1 and n > 0, or g = 0 and n > 2.
We call an n-pointed curve (C, x1, . . . , xn) hyperbolic if (C, x1 + · · ·+ xn) is
hyperbolic.

Equivalently, (C, D) is hyperbolic if it has no infinitesimal automorphisms,
i.e., H0(C, TC(−D)) = 0.

We will also work with the following analytic notion of a (very) general
general point.

Definition 1.2.2. A property holds for an analytically general point of a com-
plex orbifold X, if there exists a nowhere dense closed analytic subset S ⊂ X
so that the property holds on X− S. We say that a property holds for an ana-
lytically very general point if, locally on X, there exists a countable collection
of nowhere dense closed analytic subsets such that the property holds on the
complement of their union. If Mg,n is the analytic moduli stack of n-pointed
curves of genus g, we say that a property holds for an analytically (very)
general n-pointed curve if it holds for an analytically (very) general point of
Mg,n.

Remark 1.2.3. From the definition, it may appear that “analytically very
general” is a local notion, while “analytically general” is a global notion.
However, being “analytically general” also has the following equivalent
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local definition, which is more similar to the definition of “analytically very
general”: locally on X, there exists a nowhere dense closed analytic subset
such that the property holds on the complement of this subset.

The main geometric consequence of this work is the following constraint
on the rank of non-isotrivial polarizable variations of Hodge structure (de-
fined in §3) on an analytically very general curve:

Theorem 1.2.4. Let K be a number field with ring of integers OK. Then for an
analytically very general n-pointed hyperbolic curve (C, x1, · · · , xn) of genus g,
if V is a OK-local system on C \ {x1, · · · , xn} with infinite monodromy, and
unipotent monodromy about the xi, such that for each embedding ι : OK → C,
V⊗OK ,ι C underlies a polarizable complex variation of Hodge structure, we have

rkOK(V) ≥ 2
√

g + 1.

Remark 1.2.5. Note that a result analogous to Theorem 1.2.4 does not hold
for variations without an underlying OK-structure. Indeed, every smooth
proper curve of genus at least 2 admits a non-unitary complex polarizable
variation of Hodge structure of rank 2, arising from uniformization (see
e.g. [Sim88, bottom of p. 870]).

As local systems which arise from geometry satisfy the hypotheses of
Theorem 1.2.4, we have:

Corollary 1.2.6. Let (C, x1, · · · , xn) be an analytically very general hyperbolic n-
pointed curve of genus g. If f : X → C \ {x1, · · · , xn} is a smooth proper algebraic
morphism, i ≥ 0 is an integer, and V ⊂ Ri f∗C is a sub-local system with infinite
monodromy and unipotent monodromy about the xi, then dimC V ≥ 2

√
g + 1.

For example, we have the following concrete geometric corollary:

Corollary 1.2.7. If (C, x1, . . . , xn) is an analytically very general hyperbolic n-
pointed genus g curve, then any non-isotrivial abelian scheme over C \ {x1, · · · , xn}
with semistable reduction at the xi has relative dimension at least

√
g + 1.

Proof. This follows by applying Corollary 1.2.6 to the map f giving the
relative abelian scheme, with i = 1. The non-isotriviality condition implies
the monodromy is infinite and having semistable reduction implies the
monodromy about the xi is unipotent [Gro72, Exp IX, 3.5]. �

In what follows, we say a flat vector bundle has unitary monodromy if the
associated monodromy representation ρ : π1(C)→ GLn(C) has image with
compact closure. We will deduce the above results from Theorem 1.2.8 below,
using that a discrete subset of the image of a unitary ρ is finite.
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Theorem 1.2.8. Let (C, x1, · · · , xn) be an n-pointed hyperbolic curve of genus g.
Let (E,∇) be a flat vector bundle on C with rk E < 2

√
g + 1 and with regular

singularities and nilpotent residues at the xi. If an isomonodromic deformation of E
to an analytically general nearby n-pointed curve underlies a polarizable complex
variation of Hodge structure, then (E,∇) has unitary monodromy.

1.3. Main results on isomonodromic deformations. As remarked in §1.1,
the Hodge-theoretic results of § 1.2 arise from an analysis of the Harder-
Narasimhan filtrations of isomonodromic deformations of flat vector bundles
on curves. Our first such result is a counterexample to [BHH16, Theorem
1.3], [BHH21, Theorem 1.3], and [BHH20, Theorem 1.2], which demonstrates
that the situation is somewhat more complicated than was previously be-
lieved — there exist irreducible flat vector bundles whose isomonodromic
deformations are never semistable.

Specifically, [BHH16] ask the following question.

Question 1.3.1 ([BHH16, p. 123]). Let X be a smooth proper curve, and
D ⊂ X a reduced effective divisor. Given a flat vector bundle (E,∇) on
X, with regular singularities along D, let (E′,∇′) be the isomonodromic
deformation of (E,∇) to an analytically general nearby curve (X′, D′). Is E′
semistable?

The main claim of [BHH16] is that Question 1.3.1 has a positive answer if
(E,∇) has irreducible monodromy and the genus of X is at least 2. However,
the following results answer Question 1.3.1 in the negative, even in this
case. See Remark 4.1.9 for a discussion of the errors in previous claims that
Question 1.3.1 had a positive answer.

We use Mg,n to denote the analytic moduli stack of smooth proper curves
with geometrically connected fibers and n distinct marked points. Let Tg,n
denote the universal cover of Mg,n, and let τ : X → Tg,n denote the univer-
sal curve.

Theorem 1.3.2. Let g ≥ 2 be an integer. There exists a vector bundle with flat
connection (F ,∇) on Mg,1 such that for each fiber C of the forgetful morphism
Mg,1 →Mg, the restriction of (F ,∇) to C

(1) has semisimple monodromy and
(2) is not semistable.

We also have the following variant, where the vector bundle has irre-
ducible monodromy, instead of just semisimple monodromy.

Corollary 1.3.3. Let C be a smooth projective curve of genus at least 2. There exists
an irreducible flat vector bundle (E,∇) on C, whose isomonodromic deformations
to a nearby curve are never semistable.
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Proof. The restriction (F ,∇)|C from Theorem 1.3.2 provides a semisimple
flat vector bundle; by Theorem 1.3.2(2), its isomonodromic deformation to a
nearby curve is never semistable. Hence one of the irreducible summands of
(F ,∇)|C satisfies the statement of the corollary. �

In a positive direction, we have have the following result, showing that
the isomonodromic deformation of any semisimple flat vector bundle to an
analytically general nearby curve is close to being semistable, and moreover
it is semistable if the rank is small.

Theorem 1.3.4. Let (C, D) be hyperbolic and let (E,∇) be a flat vector bundle
on C with regular singularities along D and irreducible monodromy. Suppose
(E′,∇′) is an isomonodromic deformation of (E,∇) to a general nearby curve, with
Harder-Narasimhan filtration 0 = F′0 ⊂ F′1 ⊂ · · · ⊂ F′n = E′, for 1 ≤ i ≤ n.
Let µi denote the slope of gri

HN E′ := F′i/F′i−1. Then the following two properties
hold.

(1) If E′ is not semistable, then for every 0 < i < n, there exists j < i < k with

rk grj+1
HN E′ · rk grk

HN E′ ≥ g + 1.

(2) We have 0 < µi − µi+1 ≤ 1 for all i < n.

In other words, the consecutive associated graded pieces of the generic
Harder-Narasimhan filtration have slope differing by at most one, and, if
there are multiple pieces of the generic Harder-Narasimhan filtration, many
of them must have large rank relative to g.

Remark 1.3.5. Theorem 1.3.4 also holds without the hyperbolicity assump-
tion, as we will explain. Nevertheless, it is convenient to make the as-
sumption so that curves have no infinitesimal automorphisms. In this case
isomonodromic deformations are somewhat better behaved, see [Heu10, p.
518].

We now explain the proof of Theorem 1.3.4 in the case (C, D) is not hyper-
bolic. Suppose (C, D) is not hyperbolic, so either g = 1, n = 0 or g = 0, n ≤ 2.
In this case the fundamental group π1(C− {x1, . . . , xn}) is abelian. This im-
plies any irreducible representation of π1(C−{x1, . . . , xn}) is 1-dimensional,
so the corresponding flat vector bundle is a line bundle. In this case, E and
E′ are semistable, so Theorem 1.3.4 still holds.

As a corollary, we are able to salvage the main theorem of [BHH16] for
flat vector bundles whose rank is small relative to g, using the AM-GM
inequality.

Corollary 1.3.6. Let (C, D) be a hyperbolic curve of genus g. Let (E,∇) be a
flat vector bundle with regular singularities along D, and suppose that rk(E) <



6 AARON LANDESMAN, DANIEL LITT

2
√

g + 1. Then an isomonodromic deformation of (E,∇) to an analytically general
nearby curve is semistable.

Our methods are heavily inspired by those of [BHH16], but our technique
requires some new input from Clifford theory for vector bundles.

1.4. Motivation. Our main motivation comes from the following question.
Let f : X → Y be a map of algebraic varieties. What are the restrictions on
the topology of f ? Our Corollary 1.2.6 places a very strong restriction on
the topology of morphisms to an analytically very general curve C of genus
g. For example, it implies that if f : X → C is a strictly semistable family
with smooth generic fiber and bad reduction at n analytically very general
points of C, then any non-isotrivial monodromy representation occurring in
the cohomology of X/C has dimension at least 2

√
g + 1.

We became interested in this question and its connection to isomonodromy
while trying to understand [BHH16]. In that paper Biswas, Heu, and Hur-
tubise raise Question 1.3.1, asking whether it is possible to isomonodromi-
cally deform irreducible flat vector bundles to achieve semistability, by anal-
ogy to Hilbert’s 21st problem (also known as the Riemann-Hilbert problem).

Hilbert’s 21st problem, as answered by Bolibruch [Bol95] (correcting ear-
lier work of Plemelj), poses the question of whether every monodromy
representation can be realized by a Fuchsian system. Esnault and Viehweg
generalize this question to higher genus in [EV99]: they ask when an irre-
ducible representation can be realized as the monodromy of a flat vector
bundle (E,∇) with regular singularities at infinity, with E semistable.

In Esnault-Viehweg’s formulation, the complex structure on the under-
lying curve is fixed, and the residues of the differential equation at regular
singular points are modified to achieve semistability. Flipping this around,
Biswas-Heu-Hurtubise’s analogue asks if semistability can be achieved by
modifying the complex structure and fixing the residues. They claim that
this is always possible in the logarithmic, parabolic, and irregular settings,
in [BHH16, BHH20, BHH21]. After discovering the Hodge-theoretic coun-
terexample to these claims in Corollary 1.3.3, we proved Theorem 1.3.4 as
an attempt (1) to understand to what extent Biswas, Heu, and Hurtubise’s
Question 1.3.1 has a positive answer, and (2) to apply the cases when there is
a positive answer to the analysis of variations of Hodge structure on curves.

1.5. Idea of proof. To prove Theorem 1.2.4, we first reduce to proving The-
orem 1.2.8, using that discrete compact spaces are finite. We then prove
Theorem 1.2.8 by showing that any flat vector bundle satisfying the hypothe-
ses of the theorem is forced to be semistable on an analytically general curve,
whence the Hodge filtration consists of a single piece by Corollary 3.1.9. The
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polarization then gives a definite Hermitian form preserved by the mon-
odromy, and hence the monodromy is unitary. The key issue, which follows
from Theorem 1.3.4, is therefore to show that low rank flat vector bundles
underlying polarizable complex variations of Hodge structure are semistable
on an analytically general curve.

To prove Theorem 1.3.4, we assume we have a flat vector bundle (E,∇) on
our hyperbolic curve (C, D), and consider an isomonodromic deformation
to a nearby curve. To this end, we use the deformation theory of this flat
vector bundle with its Harder-Narasimhan filtration, which is governed by
a variant of the Atiyah bundle. We show that if the Harder-Narasimhan
filtration does not satisfy the conclusion of Theorem 1.3.4, then there is a
direction we can deform the curve along so that the filtration is destroyed.
Indeed, if the filtration persisted, deformation theory provides us with a map
from TC(−D) to a certain semistable subquotient of End(E) which vanishes
on H1. Taking the Serre duals gives a semistable vector bundle of low rank
and slope above 2g− 2 which is not generically globally generated. In the
end, we rule this out by a variant of Clifford’s theorem for vector bundles.

1.6. Organization of the paper. In §2, we give background on Atiyah bun-
dles and isomonodromic deformations. In §3 we give background on com-
plex variations of Hodge structures and their associated Higgs bundles.
Experts can likely skip these two sections. In §4, we prove Theorem 1.3.2 and
Corollary 1.3.3, providing counterexamples to earlier published claims about
semistability of isomonodromic deformations. In § 5 we prove the main
results on isomonodromic deformations, Theorem 1.3.4 and Corollary 1.3.6,
and is the technical heart of the paper. In § 6, we prove the main conse-
quences for variations of Hodge structure, Theorem 1.2.4, Corollary 1.2.6,
and Theorem 1.2.8. Finally, §7 lists some questions motivated by our results.

1.7. Acknowledgments. To be added after the referee process is complete.

2. BACKGROUND ON ATIYAH BUNDLES AND ISOMONODROMIC
DEFORMATIONS

2.1. The Atiyah bundle of a filtered vector bundle. We begin by defining
the Atiyah bundle. Let C be a smooth projective curve. Following [Gro65,
16.8.1], for E a vector bundle on C, define Diff1(E, E) as follows: for U ⊂ C
open, Diff1(E, E)(U) is the set of C-linear endomorphisms τ of E(U), such
that for each f ∈ OC(U), v ∈ E(U), we have that

τf : v 7→ τ( f v)− f τ(v)

is OC-linear. Here τf measures the failure of τ to be OC-linear, in that τf is
zero for all f if and only if τ is OC-linear.
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Definition 2.1.1 (The Atiyah bundle, see [BHH17, p. 5]). Let E be a vector
bundle on a curve C. Define the Atiyah bundle

AtC(E) ⊂ Diff1(E, E)

as the subsheaf with sections on an open set U ⊂ C given as follows. Let
AtC(E)(U) consist of those C-endomorphisms τ ∈ Diff1(E, E)(U) such that
for each f ∈ OC(U), the endomorphism of E defined by

τf : v 7→ τ( f v)− f τ(v)

is multiplication by a section δτ( f ) ∈ OC(U).

One can also construct Atiyah bundles associated to filtered bundles.

Definition 2.1.2 (Atiyah bundle of a filtered vector bundle). Let P• := (0 =
P0 ⊂ P1 ⊂ · · · ⊂ Pn = E) be a filtration on E. We define

AtC(E, P•) ⊂ AtC(E)

to be the subsheaf consisting of those endomorphisms that preserve P•.

Remark 2.1.3. From the definition, (see also [BHH16, (2.7)]), there is a short
exact sequence

(2.1) 0→ EndP•(E) ι→ AtC(E, P•) δ→ TC → 0,

where EndP•(E) ⊂ End(E) is the subsheaf of OC-linear endomorphisms
preserving P•, ι is the evident inclusion, and δ sends a differential operator τ
to the derivation

δτ : f 7→ δτ( f )

defined in the Definition 2.1.1.

Remark 2.1.4. There is an alternate, perhaps more geometric, description of
AtC(E, P•). Namely, the filtration P• gives a restriction of the structure group
of E to a parabolic subgroup P ⊂ GLn, and hence gives rise to a natural
P-torsor p : Π→ C over C, which is a subscheme of the frame bundle of E
(i.e. it consists of those frames which are compatible with P•). The tangent
exact sequence

0→ TΠ/C → TΠ → p∗TC → 0

naturally admits a P-linearization (for the P-action on Π) and hence descends
to a short exact sequence on C, which is precisely (2.1).

Next, we introduce Atiyah bundles with respect to divisors.
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Definition 2.1.5 (Atiyah bundle of a filtered vector bundle with respect to
a divisor). Let D ⊂ C be a reduced effective divisor. The Atiyah bundle
At(C,D)(E, P•) is defined as the preimage

At(C,D)(E, P•) := δ−1(TC(−D)),

where δ is the map appearing in Sequence (2.1) and where TC(−D) ↪→ TC is
the natural inclusion.

If P• = (0 = P0 ⊂ P1 = E) is the trivial filtration, we omit it from the
notation, e.g. we will use the notation At(C,D)(E) in place of At(C,D)(E, 0 ⊂ E)
when convenient.

Remark 2.1.6. Using Definition 2.1.5 and (2.1), we find that At(C,D)(E, P•)
fits into a short exact sequence

(2.2) 0→ EndP•(E)→ At(C,D)(E, P•)→ TC(−D)→ 0.

By comparing (2.2) for a filtration P• and the trivial filtration, we obtain
the short exact sequence
(2.3)
0 At(C,D)(E, P•) At(C,D)(E) End(E)/ EndP•(E) 0.

We conclude our review of Atiyah bundles by recalling two important
results we will employ. The first gives a description of connections in terms
of splittings from the tangent bundle to the Atiyah bundle. The second gives
a constraint on such splittings when E is irreducible.

Proposition 2.1.7. There is a natural bijection between splittings of the Atiyah
exact sequence (2.2) and flat connections on E with regular singularities along D
and preserving P•, given by adjointness. That is, given a connection

∇ : E→ E⊗Ω1
C(log D)

preserving P•, we may by adjointness view ∇ as a map TC(−D) → EndC(E).
This map factors through At(C,D)(E) and yields a splitting of (2.2). Moreover, this
correspondence between flat connections and splittings is bijective.

Proof. This is a matter of unwinding definitions; see [Ati57]. �

Proposition 2.1.8. Let (E,∇ : E → E⊗Ω1
C(log D)) be a flat vector bundle on

C with regular singularities along D. Suppose the monodromy representation ρ
associated to (E,∇) via the Riemann-Hilbert correspondence is irreducible. Let
q∇ : TC(−D) → At(C,D)(E) be the corresponding splitting of the Atiyah exact
sequence via Proposition 2.1.7. Then for any nontrivial filtration P• of E, the
composition

TC(−D)
q∇→ At(C,D)(E)→At(C,D)(E)/ At(C,D)(E, P•) ' End(E)/ EndP•(E)
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is nonzero.

Proof. Assume not. Then q∇ has image in At(C,D)(E, P•), and hence yields
a splitting of (2.2). Using Proposition 2.1.7, the corresponding connection
preserves P1 and hence yields a flat connection on P1 with regular singulari-
ties along D, whose monodromy is a sub-representation of the monodromy
representation ρ associated to (E,∇). But this contradicts the assumption
that ρ is irreducible. (See [BHH16, Proof of Proposition 5.3] for a similar
argument.) �

2.2. Isomonodromic deformations. We next recall the notion of isomon-
odromic deformation. We also define the notion of an “isomonodromic
deformation to an analytically general nearby curve” which appears in many
of our main results.

Notation 2.2.1. Let C , ∆ be complex manifolds, and let π : C → ∆ be a proper
holomorphic submersion with connected fibers of relative dimension one,
with ∆ contractible. Let

s1, · · · , sn : ∆→ C

be disjoint sections to π, and let D be the union

D :=
⋃

i

im(si).

Given a point 0 ∈ ∆, let (C, D) := (π−1(0), C ∩ D) and further assume
(C, D) is hyperbolic.

Lemma 2.2.2. With notation as in Notation 2.2.1, let

(E,∇ : E→ E⊗Ω1
C(log D))

be a flat vector bundle on C with regular singularities along D. Such a logarithmic
flat vector bundle extends canonically to a logarithmic flat vector bundle

(E , ∇̃ : E → E ⊗Ω1
C (log D))

on C with regular singularities along D .

Proof. This follows from Deligne’s work on differential equations with regu-
lar singularities [Del70] and is explained in [Heu10, Theorem 3.4], following
work of Malgrange [Mal83a, Mal83b]. In particular, [Mal83a, Theoreme 2.1]
explains the case where C has genus zero, and the general case is similar. We
now recapitulate the proof.

The restriction of (E,∇) to C \ D is a flat vector bundle and hence gives
rise to a locally constant sheaf of C-vector spaces

V := ker(∇)
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on C \ D. As ∆ is contractible, the inclusion

C \ D ↪→ C \D

is a homotopy equivalence; thus V extends uniquely (up to canonical iso-
morphism) to a local system Ṽ on C \D .

Manin’s local results on extending flat vector bundles across divisors
[Del70, Proposition 5.4] imply that there is a canonical extension, which is
unique, up to unique isomorphism,

(∇̃ : E → E ⊗Ω1
C (log D))

of
(Ṽ⊗C OC \D , id⊗d)

to a flat vector bundle on C with regular singularities along D , equipped
with an isomorphism (E , ∇̃)|C ' (E,∇). �

Using the above, we are ready to define isomonodromic deformations.

Definition 2.2.3 (Isomonodromic Deformation). With notation as in Nota-
tion 2.2.1, let D = x1 + · · ·+ xn, so that (C, D) is an n-pointed hyperbolic
curve of genus g. Let (E,∇) be a flat vector bundle on C with regular
singularities at the xi. We call the extension (E , ∇̃) as in Lemma 2.2.2 the
isomonodromic deformation of (E,∇). If ∆ = Tg,n is the universal cover of
of the analytic stack Mg,n, and C → ∆ is the universal curve, we call the
isomonodromic deformation over such ∆ the universal isomonodromic deforma-
tion.

Definition 2.2.4. With notation as in Definition 2.2.3, let ∆ be the universal
cover of Mg,n. We use an isomonodromic deformation to a nearby curve to denote
the restriction of (E , ∇̃) to any fiber of C → ∆. We use an isomonodromic
deformation to an analytically general nearby curve to denote the restriction
of (E , ∇̃) to a general fiber of C → ∆, i.e., a fiber in the complement of a
nowhere dense closed analytic subset.

Remark 2.2.5. The construction of Lemma 2.2.2 is functorial: given a com-
mutative diagram

D� _

��

� � // D //
� _

��

D ′� _

��
C �
� //

��

C //

π
��

C ′

π′
��

0 �
� // ∆ // ∆′
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and a flat vector bundle (E,∇) on C with regular singularities along D,
the isomonodromic deformation over ∆′ pulls back to the isomonodromic
deformation over ∆.

Example 2.2.6 (Families of families, essentially in [Dor01]). With notation
as in Notation 2.2.1, suppose D = ∅, and let h̃ : X → C be a proper
holomorphic submersion. Let X = h−1(C), and let h = h̃|X. Then for each
i ≥ 0, Rih̃∗Ω•dR,X /C with its Gauss-Manin connection is the isomonodromic
deformation of Rih∗Ω•dR,X/C with its Gauss-Manin connection.

2.3. Deformation theory of isomonodromic deformations. We now ana-
lyze the infinitesimal deformation theory of isomonodromic deformations.

Notation 2.3.1. Let ArtC be the category of local Artin C-algebras. Let C be a
smooth proper curve over C, D ⊂ C a reduced effective divisor, and

(E,∇ : E→ E⊗Ω1
C(log D))

a flat vector bundle on C with logarithmic singularities along D. Let P• be a
filtration of E.

Definition 2.3.2 (Deformations of a curve with divisor). Let

Def(C,D) : ArtC → Set

be the functor sending a local Artin C-algebra (A,m, κ) (so m is the maximal
ideal and κ is the residue field) to the set of flat deformations of (C, D) over
A. More precisely, it assigns to A the set of those (C , D , q, f ) where q : C →
Spec A is a flat morphism, D ⊂ C is a relative Cartier divisor over Spec A
and f : C → C is a map inducing an isomorphism C → C ×Spec A Spec κ
taking D isomorphically to D ×Spec A Spec κ.

Proposition 2.3.3. With notation as in Definition 2.3.2, there is a canonical and
functorial bijection

Def(C,D)(C[ε]/ε2)
∼→ H1(C, TC(−D)).

Proof. This is standard, see [Ser06, Proposition 3.4.17]. �

We next generalize the above to describe the deformation theory of filtered
vector bundles on curves.

Definition 2.3.4 (Deformations of a filtered vector bundle). Let

Def(C,D,E,P•) : ArtC → Set

be the functor sending A to the set of flat deformations of (C, D, E) over
A. More precisely, it assigns to A the set of (C , D , q, f , E , P•, ψ) where
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(C , D , q, f ) is a flat deformation of (C, D) over A as in Definition 2.3.2, E
is a vector bundle on C , P• is a filtration of E by sub-bundles, and ψ :
f ∗(E , P•)→ (E, P) is an isomorphism of filtered vector bundles on C.

Proposition 2.3.5. Let (E, P•) be a filtered vector bundle on a curve C. Let D ⊂ C
be a reduced effective divisor. There is a canonical and functorial bijection

Def(C,D,E,P•)(C[ε]/ε2)
∼→ H1(C, At(C,D)(E, P•)).

Proof. This is explained in [BHH16, §2.2]. �

Remark 2.3.6. If P• is trivial, we omit it from the notation. In particular,

Def(C,D,E)(C[ε]/ε2)
∼→ H1(C, At(C,D)(E)).

There is an evident natural transformation

Forget : Def(C,D,E) → Def(C,D)

given by forgetting E. The construction of isomonodromic deformations
yields a section

iso : Def(C,D) → Def(C,D,E)

to this map (which depends on ∇), as we now spell out.

Proposition 2.3.7. Let p : At(C,D)(E) → TC(−D) be the natural quotient map,
and

q∇ : TC(−D)→ At(C,D)(E)

be the section to p arising from ∇ via Proposition 2.1.7. Under the natural identifi-
cations

Def(C,D)(C[ε]/ε2)
∼→ H1(C, TC(−D))

and
Def(C,D,E)(C[ε]/ε2)

∼→ H1(C, At(C,D)(E))

arising from Proposition 2.3.3 and Proposition 2.3.5, the two squares below com-
mute:

Def(C,D,E)(C[ε]/ε2)
∼ //

Forget
��

H1(C, At(C,D)(E))

p∗
��

Def(C,D,E)(C[ε]/ε2)
∼ // H1(C, At(C,D)(E))

Def(C,D)(C[ε]/ε2)
∼ // H1(C, TC(−D)) Def(C,D)(C[ε]/ε2)

∼ //

iso

OO

H1(C, TC(−D)).

q∇∗

OO

Proof. This is explained in [BHH16, §2.2 and §4.1]. �

We recall one additional result describing when a filtration extends to a
deformation.
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Lemma 2.3.8. Suppose we are given (C, D, E,∇) and a filtration P• of E as in
Notation 2.3.1. Assume further we have a first-order deformation (C , D) of (C, D)

corresponding to an element s ∈ Def(C,D)(C[ε]/ε2)
∼→ H1(C, TC(−D)). With

q∇ as in Proposition 2.3.7, suppose q∇(s) corresponds to a deformation (C , D , E )
of (C, D, E) in which P• ⊂ E admits an extension to a filtration P• of E . Then

q∇(s) ∈ ker
(

H1(C, At(C,D)(E))→ H1(C, End(E)/ EndP•(E))
)

.

Proof. Note that the map

H1(C, At(C,D)(E))→ H1(C, End(E)/ EndP•(E))

is induced by the surjection of sheaves At(C,D)(E) → End(E)/ EndP•(E)
from (2.3). The proof is explained following the proof of [BHH16, Lemma
3.1].

We now briefly recall the main idea. In the above situation, q∇(s) ∈
H1(C, At(C,D)(E)) is in the image of the natural map

H1(C, At(C,D)(E, P•))→ H1(C, At(C,D)(E))

and the composition

H1(C, At(C,D)(E, P•))→ H1(C, At(C,D)(E))→ H1(C, End(E)/ EndP•(E))

vanishes. Indeed, this composition is part of the long exact sequence in
cohomology induced by the short exact sequence of sheaves (2.3). �

3. HODGE-THEORETIC PRELIMINARIES

We briefly recall the definition of a variation of Hodge structure, and some
standard positivity and semistability results for the vector bundles associated
to such variations. In particular, Lemma 3.1.6, which shows the first filtered
piece of the Hodge filtration tends to have positive degree, is crucial to our
semistability arguments. The properties in Proposition 3.1.5 will also be used
repeatedly in this paper

3.1. Complex variations of Hodge structure. Let X be a smooth irreducible
complex variety.

Definition 3.1.1 (Polarizable complex variations of Hodge structure). A
complex variation of Hodge structure on X is a triple (V, Vp,q, D), where V is a
C∞ complex vector bundle on X, V = ⊕Vp,q is a direct sum decomposition,
and D is a flat connection satisfying Griffiths transversality:

D(Vp,q) ⊂ A1,0(Vp,q)⊕ A0,1(Vp,q)⊕ A1,0(Vp−1,q+1)⊕ A0,1(Vp+1,q−1).

A polarization on (V, Vp,q, D) is a flat Hermitian form ψ on V such that the
Vp,q are orthogonal to one another under ψ, and such that (−1)pψ is positive
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definite on each Vp,q. A polarizable complex variation of Hodge structure is a
complex variation of Hodge structure which admits a polarization.

We call the holomorphic flat vector bundle (E,∇) := (ker(D)⊗C O , id⊗d)
the holomorphic flat vector bundle associated to the complex variation of Hodge
structure. The filtration FpV := ⊕j≥pVp,q of V induces a decreasing Hodge
filtration F•V by holomorphic sub-bundles, such that

(3.1) ∇(Fp) ⊂ Fp−1 ⊗Ω1
X.

If V is a complex local system on X which is isomorphic to ker(D) for
some polarizable complex variation of Hodge structure (V, Vp,q, D), we say
that V underlies a polarizable complex variation of Hodge structure.

Definition 3.1.2. Let X be a smooth projective variety containing X as a
dense open subvariety with simple normal crossings complement Z. We
say that a flat holomorphic vector bundle (E,∇) on X has (quasi-)unipotent
monodromy at infinity if the monodromy of (E,∇) about each component of
Z is (quasi-)unipotent.

Definition 3.1.3 (Deligne canonical extension [Del70]). With notation as in
Definition 3.1.2, let (E,∇) be a flat holomorphic vector bundle on X with
unipotent monodromy at infinity. The Deligne canonical extension (E,∇ : E→
E⊗Ω1

X
(log Z)) of (E,∇) to X is the unique flat vector bundle on X with

regular singularities along Z, equipped with an isomorphism (E,∇)|X
∼→

(E,∇), characterized by the property that its residues along Z are nilpotent.

Definition 3.1.4 (The associated Higgs bundle). Let (E, F•,∇) be a holomor-
phic vector bundle E on a smooth variety X, with a flat connection ∇ with
regular singularities along a simple normal crossings divisor Z ⊂ X, and a
decreasing filtration F• by holomorphic sub-bundles satisfying the Griffiths
transversality condition

(3.2) ∇(Fp) ⊂ Fp−1 ⊗Ω1
X(log Z).

The associated Higgs bundle is the pair (⊕i gri
F• E, θ), where the Higgs field

θ :=
⊕

i

(θi : gri
F• E→ gri−1

F• E⊗Ω1
X(log Z))

is the OX-linear map induced by ∇.

We collect some basic facts about polarizable complex variations of Hodge
structure, the canonical extensions thereof, and their associated Higgs bun-
dles:
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Proposition 3.1.5. Let X be a smooth projective complex variety, Z ⊂ X a simple
normal crossings divisor, and let X = X \ Z. Let L be an ample line bundle on X.
Let (V, Vp,q, D) be a polarizable complex variation of Hodge structure on X with
unipotent monodromy about the components of Z, (E, F•,∇) be the holomorphic
flat vector bundle associated to this variation of Hodge structure, with its Hodge
filtration, and let (E,∇) be its Deligne canonical extension.

(1) The local system V := ker(∇) associated to (E,∇) is semisimple.
(2) The local system V may be canonically decomposed as

V '
⊕

i

Li ⊗Wi,

where the Li are pairwise non-isomorphic irreducible complex local systems
on X, and each Wi is a complex vector space. Each Li underlies a polarizable
complex variation of Hodge structure, and each Wi carries a complex polar-
ized Hodge structure, both unique up to shifting the grading, and compatible
with the variation carried by V.

(3) E has vanishing rational Chern classes.
(4) There exists a canonical extension of F• to E, such that (E, F•,∇) satisfies

the Griffiths transversality condition (3.2).
(5) The Higgs bundle (⊕i gri

F• E, θ) associated to (E, F•,∇) is polystable of
degree zero. That is, set deg(H) = c1(H) · c1(L)dim X−1 for a coherent
sheaf H on X. Then, there exist a collection of vector bundles Ej with
deg(Ej) = 0 and maps θj : Ej → Ej ⊗ Ω1

X
(log Z) so that so that

(⊕i gri
F• E, θ) = ⊕j(Ej, θj), such that for any θj-stable proper subsheaf

H ⊂ Ej, deg H < 0.

Proof. The proof of (1) is explained in [Del87, 1.11-1.12] and (2) is [Del87,
1.13]. The proof of (3) follows from [EV86, B.3] while (4) follows from the
Nilpotent Orbit Theorem [CKS86, 2.2(1)]. Finally, (5) is explained on [Ara19,
p. 4]; the case where X is a curve, which is all we will use in this paper, is
due to Simpson [Sim90, Theorem 5]. See the discussion in the introduction
of [Ara19] for a nice summary of this and related topics. �

The next lemma is crucial in the proof of our main result Theorem 1.2.8
since the positivity it gives for FiE will contradict our later results on semista-
bility, unless the Hodge filtration has only a single part. The connection to
semistability is spelled out below in Corollary 3.1.9.

Lemma 3.1.6. Let C be a smooth proper curve, Z ⊂ C a reduced effective divisor,
and (V, Vp,q, D) a a polarizable complex variation of Hodge structure on C \ Z with
unipotent monodromy around the components of Z. Let (E, F•,∇) be the Deligne
canonical extension of the associated flat holomorphic vector bundle to C. Let i be
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maximal such that FiE is non-trivial, where F• is the Hodge filtration, and suppose
that the Higgs field

θi : FiE→ gri−1
F• E⊗Ω1

C(log Z)
is non-zero. Then FiE has positive degree.

Remark 3.1.7. Lemma 3.1.6 is essentially due to Griffiths. In the case of
real variations (as opposed to complex variations) of Hodge structure on a
smooth proper curve, it follows from the curvature formula [Gri70, Theorem
5.2], and is observed there in some special cases [Gri70, Corollary 7.10].
For a more precise reference, see [Pet00, Corollary 2.2], which immediately
implies the claim for real variations of Hodge structure on a smooth proper
curve. However, as we were unable to find a reference in the case of complex
variations, we now give a simple proof.

Proof of Lemma 3.1.6. The vector bundle FiE with the zero Higgs field is a quo-
tient of the Higgs bundle (⊕i gri

F• E, θ), and hence has non-negative degree
by the fact that the latter is polystable of degree zero, by Proposition 3.1.5(5).
It has degree zero if and only if it is a direct summand of (⊕i gri

F• E, θ) by
polystability; but this is ruled out by the nonvanishing of θi. �

Remark 3.1.8. By the construction of the Higgs field θ, the condition that
θi is non-zero in Lemma 3.1.6 is equivalent to the statement that FiE is not
preserved by ∇. For example, it is automatically nonzero if (E,∇) has
irreducible monodromy and FiE is a proper sub-bundle of E.

We now spell out how Lemma 3.1.6 relates to semistability.

Corollary 3.1.9. Let (E, F•,∇) be as in Lemma 3.1.6. Then the vector bundle E is
not semistable.

Proof. The vector bundle E has degree zero by Proposition 3.1.5(3). But by
Lemma 3.1.6, FiE has positive degree, and is hence a destabilizing subsheaf.

�

4. VARIATIONS OF HODGE STRUCTURE AND THE KODAIRA-PARSHIN TRICK

In this section we find that variations of Hodge structure on Mg,1 with
monodromy which is “big” in a suitable sense provide examples of flat vector
bundles on curves whose isomonodromic deformation to a nearby curve
is never semistable. We then produce such variations of Hodge structure
via the Kodaira-Parshin trick. This will be used to prove Theorem 1.3.2
and contradicts earlier claimed theorems of Biswas, Heu, and Hurtubise
[BHH16, Theorem 1.3], [BHH21, Theorem 1.3], and [BHH20, Theorem 1.2],
as described further in Remark 4.1.9.
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In §6, we will use that variations of Hodge structure with suitably large
monodromy yield flat vector bundles which do not have isomonodromic
deformations to semistable bundles. This will be used to analyze variations
of Hodge structure on an analytically very general curve.

4.1. Construction of the counterexample. We now set up the proof of The-
orem 1.3.2 and Corollary 1.3.3. We will construct a variation of Hodge
structure over the analytic moduli stack Mg,1 whose restriction to each fiber
of the forgetful map Mg,1 →Mg satisfies the hypotheses of Lemma 3.1.6. We
will do this via the Kodaira-Parshin trick (see [Par68, Proposition 7] and also
[LV20, Proposition 7.1]), which produces a family of curves over Mg,1 which
is non-isotrivial when restricted to each fiber of the natural forgetful map
Mg,1 →Mg. We give a proof appealing to [CD17], but one can also prove it
using Proposition 3.1.5 and Corollary 3.1.9, as we mention in Remark 4.1.8
Because we had difficulty finding a suitable reference, we now present a
version of the Kodaira-Parshin trick in families.

Proposition 4.1.1 (Kodaira-Parshin trick). Let Y denote a Riemann surface of
genus g ≥ 1 with a point p ∈ Y and let Y◦ := Y− p. Choose a basepoint y ∈ Y◦.
Suppose G is a finite center-free group with a surjection φ : π1(Y◦, y) � G which
sends the loop around the puncture p ∈ Y to a non-identity element of G. Then there
exists a smooth proper relative dimension 1 map of analytic stacks f : X →Mg,1
so that the fiber over a geometric point [(C, p)] ∈Mg,1 is a finite disjoint union of
G-covers of C ramified at p.

We will prove this below in §4.1.5.

Remark 4.1.2. In the finite disjoint union of G-covers appearing at the end
of the statement of Proposition 4.1.1, we can explicitly identify the finite set
of G-covers. Namely, suppose h ∈ π1(Mg,2), viewed as an automorphism of
the fundamental group of a 2-pointed genus g curve π1(Y◦, y). (See §4.1.3
below for an explanation of the action of π1(Mg,2) on π1(Y◦, y).) There is one
cover associated to each map of the form φh : π1(Y◦, y)→ G, with φh(g) :=
φ(hgh−1), modulo the following equivalence relation: we identify φh ∼ φg if
they are conjugate, i.e., if there exists m ∈ G with φh(s) = mφg(s)m−1 for all
s ∈ π1(Y◦, y).

4.1.3. Setup to prove Proposition 4.1.1. Let

π : Mg,2 →Mg,1

be the natural forgetful map. Let x ∈Mg,2 be a point. Let x̄ := π(x) ∈Mg,1

and let C◦ ⊂Mg,2 denote the fiber of π−1(x̄).
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Note that C◦ is the complement of a point in a smooth proper connected
curve of genus g. There is a natural short exact sequence

1→ π1(C◦, x)→ π1(Mg,2, x)→ π1(Mg,1, x̄)→ 1(4.1)

associated to the map Mg,2 →Mg,1 with fiber C◦. We may obtain this from
the Birman exact sequence [FM12, Theorem 4.6] for mapping class groups,
after identifying the fundamental group for Mg,n with the mapping class
group of an n-times punctured genus g surface. (The case n = 0 follows
from contractibility of the universal cover of Mg [FM12, Theorem 10.6] with
covering group given by the mapping class group, and the case of general n
can be deduced from the Birman exact sequence [FM12, Theorem 4.6].)

Let G be a center-free finite group and suppose further there is a surjection

γ : π1(C◦, x) � G.

We assume that γ takes the conjugacy class of the loop around the puncture
of C◦ to a non-identity conjugacy class of G.

Define Γ ⊂ π1(Mg,2, x) as the set of h ∈ π1(Mg,2, x) such that there exists
γ̃(h) ∈ G with

γ(hgh−1) = γ̃(h)γ(g)γ̃(h)−1

for all g ∈ π1(C◦, x).

Lemma 4.1.4. Keeping notation as in §4.1.3, the map γ determines a well-defined
surjective homomorphism

γ̃ : Γ→ G
h 7→ γ̃(h).

Moreover, Γ ⊂ π1(Mg,2, x) has finite index.

Proof. We first claim that Γ contains π1(C◦, x) and surjects onto G. Indeed,
for h ∈ π1(C◦, x), one may take γ̃(h) = γ(h). Therefore, the surjectivity of γ
implies that γ̃ is also surjective.

Next, we claim that for each h, γ̃(h) is uniquely determined. Indeed,
suppose γ̃(h) may be either α and β. Then we would have αγ(g)α−1 =
βγ(g)β−1. Since γ is surjective, as shown above, we find αβ−1 lies in the
center of G, and therefore is trivial. So α = β.

The uniqueness of γ̃(h) just established shows that γ̃ determines a well-
defined map. This is moreover a homomorphism by the above established
uniqueness, because we then obtain γ̃(h)γ̃(h′) = γ̃(hh′).

Finally, we claim Γ has finite index in π1(Mg,2, x). To see this, observe
that there is an action of π1(Mg,2, x) on the set of surjective homomorphisms
π1(C◦, x) → G sending φ : π1(C◦, x) → G to the map φh(g) := φ(hgh−1).
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By definition, we have h ∈ Γ if and only if γh is conjugate to γ. In partic-
ular, Γ contains the stabilizer of γ under the action of π1(Mg,2, x). But this
stabilizer has finite index in π1(Mg,2, x) because G is finite and π1(C◦, x) is
finitely generated, so there are only finitely many surjective homomorphisms
π1(C◦, x)→ G. �

4.1.5.

Proof of Proposition 4.1.1. Let Γ̃ be the kernel of the map γ̃ from Lemma 4.1.4.
The subgroup Γ̃ corresponds to a finite étale cover X ◦ → Mg,2. Observe
that Mg,2 ⊂ Mg,1 ×Mg Mg,1 can be viewed as a dense open substack, and
let X be the normalization of Mg,1 ×Mg Mg,1 in the function field of X ◦,
forming the following cartesian diagram

(4.2)
X ◦ X

Mg,2 Mg,1 ×Mg Mg,1.

Restricting the natural map X →Mg,1×Mg Mg,1 to a fiber C of the universal
curve Mg,1 ×Mg Mg,1 → Mg,1 yields a finite disjoint union of G-covers of
C, ramified only over the tautological marked point of C. We then take our
desired relative curve f : X → Mg,1 ×Mg Mg,1 → Mg,1 as the resulting
composition. �

In order to use Proposition 4.1.1, we will need to know there are groups G
satisfying its hypotheses. We now provide such an example.

Example 4.1.6. As a concrete example of a group G to which Proposition 4.1.1
applies, we can take G = S3 to be the symmetric group on three letters and
identify π1(Y◦, y) with the free group on the generators a1, . . . , ag, b1, . . . , bg.
The group π1(Y, y) is generated by a1, . . . , ag, b1, . . . , bg with the relation
∏

g
i=1 [ai, bi]. Consider the surjection φ : π1(C◦, y) � S3 sending a1 7→

(12), b1 7→ (13) and sending ai 7→ id, bi 7→ id for i > 1. The loop around the
puncture maps to φ(∏

g
i=1 [ai, bi]) = (12)(13)(12)−1(13)−1 = (132) 6= id.

4.1.7.

Proof of Theorem 1.3.2. Let f : X → Mg,1 denote the map from Proposi-
tion 4.1.1. Concretely, we can take G = S3 and the map φ as in Propo-
sition 4.1.1 to be that given in Example 4.1.6. Define the local system
V := R1 f∗C on Mg,1, and define F to be the vector bundle V⊗ O . Note
that F admits a natural (Gauss-Manin) connection id⊗d. The local system
V evidently underlies a variation of Hodge structure.
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Let C be a fiber of the forgetful morphism Mg,1 →Mg. Let X := f−1(C) ⊂
X . We claim that the flat vector bundle (F ,∇) satisfies the conditions of
Theorem 1.3.2, i.e. it has semisimple monodromy and F |C is not semistable.

We first check that (F ,∇)|C has semisimple monodromy. This is true
for any flat vector bundle arising from the Gauss-Manin connection on the
cohomology of a family of smooth proper varieties, by work of Deligne
[Del71, Théorème 4.2.6].

We now check that (F ,∇)|C is not semistable. By [CD17, Theorem 4], if
X → C is not isotrivial, f∗ω f is a destabilizing subsheaf of F . It remains to
show X → C is not isotrivial. The fiber of f |X over a point x ∈ C is a finite
disjoint union of finite covers of C, branched only over x. These fibers must
vary in moduli as x varies, as there are only finitely many non-constant maps
between any two curves over of genus at least 2, by de Franchis’ theorem.
(See [dF13] or [SA66, Corollary 3, p. 75], for example.) �

Remark 4.1.8. We can also give a somewhat more involved proof of Theo-
rem 1.3.2 using Corollary 3.1.9 in place of [CD17, Theorem 4], as we now
explain. This argument inspired the Hodge-theoretic results Theorem 1.2.4
and Corollary 1.2.6, proven in §6.

With notation as in the proof of Theorem 1.3.2, F has degree 0 since it
admits a flat connection, by Proposition 3.1.5(3). Therefore, it suffices to show
F has a subsheaf of positive degree. The Hodge filtration exhibits F1F '
( f |X)∗ω( f |X) as a subsheaf of F , which is destabilizing by Corollary 3.1.9
once we verify that δ : F1F → F0F /F1F ' R1( f |X)∗OX is nonzero.

We now check δ is nonzero. Locally around a point of C, δ can be identified
with the derivative of the period map [CMSP17, Theorem 5.3.4] sending a
curve corresponding to a fiber of f |X : X → C to the corresponding Hodge
structure on its first cohomology. To show this derivative is non-zero it
suffices to show that the period map is non-constant. More concretely, by
the Torelli theorem, we only need to check f |X : X → C is not isotrivial. This
follows by de Franchis’ theorem, as explained in the proof of Theorem 1.3.2.

Remark 4.1.9. As noted prior to the statement of Theorem 1.3.2, Theo-
rem 1.3.2 contradicts [BHH16, Theorem 1.3], [BHH21, Theorem 1.3], and
[BHH20, Theorem 1.2], which claim, for example, that any irreducible
flat vector bundle on a smooth proper curve of genus at least 2 admits
a semistable isomonodromic deformation. We now explain the gaps in the
proofs of those results. The error in [BHH16, Theorem 1.3] occurs in [BHH16,
Proposition 4.3]; the issue is that the map denoted f ∗∇ in diagram (4.14)
does not in general exist. The proof works correctly if G = GL2. An identical
error occurs in [BHH21, Proposition 4.4]. A different argument is given in
[BHH20]. There, the error occurs in the proof of [BHH20, Proposition 5.1],
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in which the large diagram claimed to be commutative does not in general
commute.

5. ANALYSIS OF HARDER-NARASIMHAN FILTRATION

In this section, we prove Theorem 1.3.4. Recall that a vector bundle V is
not generically globally generated if the evaluation map H0(C, V)⊗OC → V
factors through a proper subbundle of V. The basic idea will be to show that
any counterexample to Theorem 1.3.4 will produce a certain semistable vector
bundle of high slope which is not generically globally generated. In order to
see why this failure of generic global generation leads to a contradiction, we
will need some facts about (generic) global generation of vector bundles on
curves, arising from Clifford’s theorem.

5.1. Preliminary results on high slope bundles with many sections. We
start with a bound on the dimension of the space of global sections of a
vector bundle whose Harder-Narasimhan polygon has slopes between 0 and
2g.

Lemma 5.1.1. Suppose V is a vector bundle on a smooth proper curve C with
Harder-Narasimhan filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = V. Suppose moreover
that for each i, the slope of gri

N V = Ni/Ni−1 satisfies

0 ≤ µ(gri
N V) :=

deg(gri
N V)

rk(gri
N V)

≤ 2g.

Then dim H0(C, V) ≤ deg V
2 + rk V.

Proof. For convenience set Wi := gri
N V = Ni/Ni−1. Suppose W1, . . . , Wk

have slopes > 2g− 2 and Wk+1, . . . , Wn have slopes ≤ 2g− 2.
Using Clifford’s theorem for vector bundles [BPGN97, Theorem 2.1], for

i > k, we have

dim H0(C, Wi) ≤
deg Wi

2
+ rk Wi.

Also, for i ≤ k, since Wi are semistable, there are no maps Wi → ωC. There-
fore, H1(C, Wi) = 0 when i ≤ k. It follows from Riemann Roch that

dim H0(C, Wi) = deg Wi + (1− g) rk Wi
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for i ≤ k. Summing over i, we get

dim H0(C, W) ≤
n

∑
i=1

dim H0(C, Wi)

≤
k

∑
i=1

(deg Wi + (1− g) rk Wi) +
n

∑
i=k+1

(
deg Wi

2
+ rk Wi)

=
n

∑
i=1

(
deg Wi

2
+ rk Wi) +

k

∑
i=1

(
deg Wi

2
− g rk Wi)

=
deg W

2
+ rk W +

k

∑
i=1

(
deg Wi

2
− g rk Wi).

To conclude, it is enough to show deg Wi
2 − g rk Wi ≤ 0. However, since we

were assuming the slope µ(Wi) ≤ 2g, we find deg Wi ≤ 2g rk Wi and so
deg Wi

2 ≤ g rk Wi, as desired. �

The following lemma is a well known criterion for global generation,
which we spell out for completeness.

Lemma 5.1.2. Let V be a semistable vector bundle on a smooth proper curve C,
such that the slope of V satisfies µ(V) > 2g− 1. Then V is globally generated.

Proof. Let p ∈ C be a point. It suffices to show V is globally generated
by global sections at p. Indeed, V(−p) is a semistable bundle with slope
µ(V(−p)) > 2g− 2. Hence H1(C, V(−p)) = 0, as any map V(−p) → ωC
would be destabilizing. Since H1(C, V(−p)) = 0, the sequence

(5.1) 0 V(−p) V V|p 0

is exact on global sections, so H0(C, V)⊗ O → V → V|p is surjective, as
desired. �

The following result will be key to the proof of Theorem 1.3.4, as it places
a constraint on the rank of a vector bundle which is not generically globally
generated.

Proposition 5.1.3. Suppose V is a semistable vector bundle on a smooth proper
curve C, with slope µ(V) > 2g− 2. If V is not generically globally generated, then
rk V ≥ g + 1.

Proof. We will verify the hypotheses for Lemma 5.1.4. Since V is semistable
of slope more than 2g− 2, V has no maps to ωC and hence H1(C, V) = 0.
Let U ⊂ V be the saturation of the image of the evaluation map

H0(C, V)⊗OC → V.
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Using Lemma 5.1.2, we may assume 2g − 2 < µ(V) ≤ 2g − 1. If V is
not generically globally generated, U ⊂ V is a proper sub-bundle of V,
with H0(C, U)→ H0(C, V) an isomorphism. Since µ(V) ≤ 2g− 1 and V is
semistable, each graded piece gri

HN U of the Harder-Narasimhan filtration
of U must have slope at most 2g− 1. Let j be maximal such that grj

HN U
is non-zero. Since U is generically globally generated, grj

HN U has a global
section, and therefore has non-negative slope. By the definition of the Harder-
Narasimhan filtration, the same is true for every graded piece. This verifies
the hypotheses of Lemma 5.1.4, so we conclude rk V ≥ g + 1. �

Lemma 5.1.4. Suppose V is a vector bundle on a smooth proper curve C with
µ(V) > 2g− 2 and H1(C, V) = 0. Assume further U ⊂ V is a proper subbundle
such that

(1) H0(C, U) = H0(C, V),
(2) µ(U) ≤ µ(V), and
(3) each graded piece gri

HN U of the Harder Narasimhan filtration of U satisfies
0 ≤ gri

HN U ≤ 2g.
Then, rk V ≥ g + 1.

Proof. Applying Lemma 5.1.1, we conclude

H0(C, U) ≤ deg U
2

+ rk U.

Since H1(C, V) = 0,

dim H0(C, U) = dim H0(C, V) = deg V + (1− g) rk V.

Therefore, we get

deg V + (1− g) rk V ≤ deg U
2

+ rk U.

Rewriting this, and using rk U ≤ rk V − 1 and µ(U) ≤ µ(V) gives

µ(V) rk(V) + (1− g) rk V ≤ µ(U) rk U
2

+ rk U ≤ µ(V)

2
(rk V − 1) + rk V − 1.

Rearranging the terms, and multiplying both sides by 2, we obtain

µ(V) ≤ (2g− µ(V)) rk V − 2.

Since 2g− 2 < µ(V), we find 2g− µ(V) < 2 and hence

2g− 2 < µ(V) ≤ (2g− µ(V)) rk V − 2 < 2 rk V − 2.

Therefore, rk V > g as desired. �
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5.2. Reduction for the proof of Theorem 1.3.4. We next prove some prepara-
tory results to complete the proof of Theorem 1.3.4. Reviewing the idea of
the proof, described in §1.5, may be helpful.

Notation 5.2.1. Let (C, D) be a hyperbolic curve. Let (E,∇) be a flat vec-
tor bundle on C with regular singularities along D, whose associated mon-
odromy representation is irreducible. Let N•, given by 0 = N0 ⊂ N1 ⊂ · · · ⊂
Nn = E, be a nontrivial filtration of E, so n > 1. Let gri

N(E) := Ni/Ni−1.
The sheaf End(E)/ EndN•(E) has a filtration by sheaves whose associated
graded sheaf is of the form

⊕1≤i<j≤n Hom(gri
N(E), grj

N(E)).

For i < j define Ei,j := Hom(gri
N(E), grj

N(E)).
Let ∆ = Tg,n be the universal cover of the analytic stack Mg,n, and let

(C , D) be the universal marked curve over Tg,n. Let 0 ∈ ∆ be such that
(C , D)0 is isomorphic to (C, D); fix such an isomorphism. Let (E , ∇̃) be the
universal isomonodromic deformation of (E,∇) to C .

We will later take the filtration N• to be the Harder-Narasimhan filtration
of E.

By Proposition 2.1.8, the connection ∇ yields a non-zero map

TC(−D)
q∇−→ At(C,D)(E)→ End(E)/ EndN•(E).(5.2)

We now observe that if N• extends to the universal isomonodromic defor-
mation of (C, D, E), the induced map on first cohomology must vanish.

Lemma 5.2.2. Retain notation as in Notation 5.2.1. If the filtration N• extends to
a filtration on the restriction of (E , ∇̃) to a first-order neighborhood of (C, D) =
(C , D)0 ⊂ (C , D), then the composite map

H1(C, TC(−D))
q∇∗−→ H1(C, At(C,D)(E))→ H1(C, End(E)/ EndN•(E)).

induced by (5.2) is identically zero.

Proof. By Proposition 2.3.7 the map

q∇∗ : H1(C, TC(−D))→ H1(C, At(C,D)(E))

induced by the connection sends a first-order deformation of the pointed
curve (C, D) to the corresponding first-order deformation of the triple (C, D, E)
obtained from isomonodromically deforming the connection ∇. But given
a first-order deformation (C̃, D̃, Ẽ) of (C, D, E) such that N• ⊂ E admits an
extension Ñ• to Ẽ, the corresponding element of H1(C, At(C,D)(E)) maps to 0
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in H1(C, End(E)/ EndN•(E)), by Lemma 2.3.8. The assumption is precisely
that this is true for all elements of H1(C, At(C,D)(E)) in the image of q∇∗ . �

We now analyze the vector bundles Ei,j := Hom(gri
N(E), grj

N(E)), i < j.

Lemma 5.2.3. With notation as in Notation 5.2.1, for every 0 < i < n, there
exists j, k with j < i and k ≥ i + 1 so that the nonzero map TC(−D) →
End(E)/ EndN•(E) induces a nonzero map φj+1,k : TC(−D)→ Ej+1,k.

Proof. First, by Proposition 2.1.8, the map TC(−D)→ End(E)/ EndN•(E) is
nonzero. Let j be maximal such that ∇(N j) ⊂ Ni ⊗Ω1

C(log D). Note that
j < i as the monodromy of (E,∇) is irreducible, so Ni is not a proper flat
subbundle of (E,∇), implying ∇(Ni) 6⊂ Ni ⊗Ω1

C(log D). Let k be minimal
such that ∇(N j+1) ⊂ Nk ⊗Ω1(D). Note that k ≥ i + 1 by the definition of j.
By construction, the connection induces a nonzero OC-linear map

N j+1/N j → (Nk/Ni)⊗Ω1
C(D)→ (Nk/Nk−1)⊗Ω1

C(D),

or equivalently a nonzero map

φj+1,k : TC(−D)→ Hom(grj+1
N (E), grk

N(E)) = Ej+1,k. �

We have shown that for each i, there exist j < i < k, and a non-zero map

TC(−D)→ Ej+1,k = Hom(grj+1
N (E), grk

N(E)).

We next refine Lemma 5.2.2 by showing that if N• is the Harder-Narasimhan
filtration of E, the map on H1 induced by φj+1,k : TC(−D) → Ej+1,k must
also vanish.

Remark 5.2.4. Suppose the filtration N• appearing in Notation 5.2.1 is the
Harder-Narasimhan filtration of E.

Because a tensor product of semistable sheaves is semistable in character-
istic 0, the Ei,j are semistable in this case. [HL10, Theorem 3.1.4].

Note that as i < j, Ei,j has negative degree since deg gri
N(E) > deg gri+1

N (E).
by the definition of the Harder-Narasimhan filtration.

Lemma 5.2.5. Notation as in Notation 5.2.1. Suppose in addition that N• is the
Harder-Narasimhan filtration of E. Fix i with 0 < i < n and let j, k, and

φj+1,k : TC(−D)→ Ej+1,k

be the data constructed in Lemma 5.2.3. If the filtration N• extends to a filtration
on the restriction of (E , ∇̃) to a first-order neighborhood of (C, D) = (C , D)0 ⊂
(C , D), then the map H1(C, TC(−D)) → H1(C, Ej+1,k) induced by φj+1,k van-
ishes.
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Proof. The proof is a diagram chase. We first show there is a natural map
TC(−D)→ Hom(N j+1, E/Nk−1) which vanishes on H1. The natural surjec-
tion of sheaves End(E) � Hom(N j+1, E) induces a surjection

End(E)/ EndN•(E) � Hom(N j+1, E/Nk−1)

and hence a surjection

H1(C, End(E)/ EndN•(E)) � H1(C, Hom(N j+1, E/Nk−1)).

Thus the composition TC(−D)→ End(E)/ EndN•(E)→ Hom(N j+1, E/Nk−1)
induces the zero map on H1, by Lemma 5.2.2.

We next show the natural map TC(−D)→ Hom(grj+1
N (E), E/Nk−1) to be

described below, vanishes on H1. As a first step, we claim that

H0(C, Hom(N j, E/Nk−1)) = 0.

This holds because the slopes of the Harder-Narasimhan constituents of
Hom(N j, E/Nk−1) are negative, by the definition of the Harder-Narasimhan
filtration. Therefore, the short exact sequence

0→ Hom(grj+1
N (E), E/Nk−1)→ Hom(N j+1, E/Nk−1)→ Hom(N j, E/Nk−1)→ 0

induces an injection

H1(C, Hom(grj+1
N (E), E/Nk−1))→ H1(C, Hom(N j+1, E/Nk−1)).

Hence TC(−D) → Hom(grj+1
N (E), E/Nk−1) induces the zero map on H1,

since we have seen above the composite TC(−D)→ Hom(grj+1
N (E), E/Nk−1)→

Hom(N j+1, E/Nk−1) vanishes on H1.
We conclude by showing the map

φj+1,k : TC(−D)→ Hom(grj+1
N (E), grk

N(E))

vanishes on H1. Since the slopes of the Harder-Narasimhan constituents of
Hom(grj+1

N (E), E/Nk) are negative, we find

H0(C, Hom(grj+1
N (E), E/Nk)) = 0.

The short exact sequence

0→ Hom(grj+1
N (E), grk

N(E))→ Hom(grj+1
N (E), E/Nk−1)→ Hom(grj+1

N (E), E/Nk)→ 0

therefore induces an injection

H1(C, Hom(grj+1
N (E), grk

N(E)))→ H1(C, Hom(grj+1
N (E), E/Nk−1)).
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Therefore, the map φj+1,k : TC(−D) → Hom(grj+1
N (E), grk

N(E)) = Ej+1,k

induces zero on H1 as desired. �

We now show that if the map H1(C, TC(−D)) → H1(C, Ej+1,k) vanishes,
we will be able to produce a vector bundle which is not generically globally
generated. We will later apply Proposition 5.1.3 and Lemma 5.1.2 to this
vector bundle to obtain Theorem 1.3.4(1) and (2).

Lemma 5.2.6. With notation as in Notation 5.2.1, suppose the map H1(C, TC(−D))→
H1(C, Ej+1,k) (induced by the non-zero map φj+1,k : TC(−D) → Ej+1,k of
Lemma 5.2.3) vanishes. Then the E∨j+1,k ⊗ωC is not generically globally generated.

Proof. Since φj+1,k : TC(−D)→ Ej+1,k is nonzero, we obtain a nonzero Serre
dual map

E∨j+1,k ⊗ωC → ω⊗2
C (D),(5.3)

which induces the 0 map

H0(C, E∨j+1,k ⊗ωC)→ H0(C, ω⊗2
C (D)).

In particular, E∨j+1,k ⊗ ωC is not generically globally generated. Indeed,
any global section must lie in the kernel of (5.3), which has corank one in
E∨j+1,k ⊗ωC. �

We now prove Theorem 1.3.4.

5.2.7.

Proof of Theorem 1.3.4. We use notation as in Notation 5.2.1. We aim first
to show that if (E′,∇′) is the isomonodromic deformation of (E,∇) to an
analytically general nearby curve C′, then for every i there are some j < i < k
with rk grj+1

HN E′ · rk grk
HN E′ ≥ g + 1.

By [BHH21, Lemma 5.1], the locus of bundles in a family E on C → ∆
which are not semistable form a closed analytic subset, and if a general
member is not semistable, then, after passing to an open subset of ∆, there is
a filtration on E restricting to the Harder-Narasimhan filtration on each fiber.
Thus after replacing (C, D) with an analytically general nearby curve (C′, D′),
and replacing (E,∇) with the restriction (E′,∇′) of the isomonodromic
deformation to (C′, D′), we may assume the Harder-Narasimhan filtration
HN• of E′ extends to a filtration of E on a first-order neighborhood of C′.

We next verify that for every 0 < i < n, there is some j < i < k for
which E′∨j+1,k ⊗ ωC′ is not generically globally generated. By Lemma 5.2.3,
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for every 0 < i < n, there is some j < i and k ≥ i + 1 so that the map
TC′(−D′)→ End(E′)/ EndHN•(E′) induces a nonzero map

TC′(−D′)→ E′j+1,k := Hom(grj+1
HN E′, grk

HN E′).

By Lemma 5.2.5, H1(C′, TC′(−D′))→ H1(C′, E′j+1,k) vanishes. By Lemma 5.2.6,
E′∨j+1,k ⊗ωC′ is not generically globally generated.

We are finally in a position to prove Theorem 1.3.4(1). It follows from
Proposition 5.1.3 that

rk grj+1
HN E′ · rk grk

HN E′ = rk E′∨j+1,k ⊗ωC′ ≥ g + 1.

Thus Theorem 1.3.4(1) holds.
We now conclude by verifying Theorem 1.3.4(2). By Lemma 5.1.2, we have

that

E′∨j+1,k ⊗ωC′ = Hom(grj+1
HN E′, grk

HN E′)∨ ⊗ωC′

must have slope at most 2g− 1 since it is not generically globally generated.
As Hom(grj+1

HN E′, grk
HN E′) has negative slope by the definition of the Harder-

Narasimhan filtration,

−1 ≤ µ(Hom(grj+1
HN(E′), grk

HN(E′))) < 0.

Since the slope of a tensor product of vector bundles is the sum of their
slopes, we find

0 < µ(grj+1
HN(E′))− µ(grk

HN(E′)) ≤ 1.

Using µ(grj+1
HN(E′)) ≥ µ(gri

HN(E′)) as j+ 1 ≤ i and µ(gri+1
HN(E′)) ≥ µ(grk

HN(E′))
as i + 1 ≤ k, we conclude 0 < µ(gri

HN(E′))− µ(gri+1
HN(E′)) ≤ 1. �

5.2.8. We next prove Corollary 1.3.6, which follows from Theorem 1.3.4 and
the AM-GM inequality.

Proof of Corollary 1.3.6. If (E′, ∆′) is an isomonodromic deformation of (E, ∆)
to an analytically general nearby curve which is not semistable, it follows
from Theorem 1.3.4(1) that there will be j, k with j < i < k so that the Harder-
Narasimhan filtration HN of E′ satisfies rk grj+1

HN E′ · rk grk
HN E′ ≥ g + 1.

Since rk grj+1
HN E′ + rk grk

HN E′ ≤ rk E′ = rk E, it follows from the arithmetic
mean-geometric mean inequality that

g + 1 ≤ rk grj+1
HN E′ · rk grk

HN E′ ≤
(

rk E
2

)2

.

So rk E ≥ 2
√

g + 1 as desired. �
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6. VARIATIONS OF HODGE STRUCTURE ON AN ANALYTICALLY GENERAL
CURVE

In this section we prove Theorem 1.2.8, Theorem 1.2.4, and Corollary 1.2.6.

6.1. The proof of Theorem 1.2.8. We start with the following lemma, which
gives a useful criterion for showing a representation is unitary.

Lemma 6.1.1. Suppose (C, x1, . . . , xn) is an n-pointed hyperbolic curve and (E,∇)
is a flat vector bundle on C \ {x1, . . . , xn} underlying a polarizable complex vari-
ation of Hodge structure with unipotent monodromy around the xi. Let (E,∇)
be the Deligne canonical extension of (E,∇) to C. If E is semistable, then the
representation of π1(C \ {x1, · · · , xn}) associated to (E,∇) is unitary.

Proof. By Proposition 3.1.5(2), we may write V := ker(∇) as

V :=
⊕

i

Li ⊗Wi

where the Li each have irreducible monodromy, unipotent monodromy
about the xi, and also underlie polarizable variations of Hodge structure,
and the Wi are constant complex Hodge structures. It suffices to show the
representation associated to each Li has unitary monodromy. We may there-
fore reduce to the case that V = Li and assume that (E,∇) has irreducible
monodromy.

Let i be maximal such that FiE is non-zero. Since E is semistable, it follows
from Corollary 3.1.9 that the natural map

FiE→ Fi−1E/FiE⊗ωC

induced by the connection is zero, i.e. the connection preserves FiE. By irre-
ducibility of the monodromy of (E,∇), we must have that FiE equals E. But
in this case (E,∇) is unitary, as the monodromy preserves the polarization,
a definite Hermitian form. �

6.1.2. We now recall the setup of Theorem 1.2.8. Let (C, x1, · · · , xn) be an
n-pointed hyperbolic curve of genus g. Let (E,∇) be a flat vector bundle
on C with rk E < 2

√
g + 1 such that (E,∇) has regular singularities and

nilpotent residues at the xi (i.e. it is the Deligne canonical extension to C of its
restriction to C \ {x1, · · · , xn}). Our goal is to show that if an isomonodromic
deformation of (E,∇) to an analytically general nearby n-pointed curve
underlies a polarizable complex variation of Hodge structure, then (E,∇)
has unitary monodromy.

Proof of Theorem 1.2.8. After replacing (C, x1, · · · , xn) with an analytically
general nearby curve, and (E,∇) with an isomonodromic deformation to
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this curve, we may assume by Corollary 1.3.6 that E is semistable. Thus
(E,∇) has unitary monodromy by Lemma 6.1.1. �

6.1.3. The proof of Theorem 1.2.4. The proof of Theorem 1.2.4 follows from the
integrality assumption and the following lemma.

Lemma 6.1.4. Suppose Γ is a group, K is a number field, and ρ is a representation

ρ : Γ→ GLm(OK).

If for each embedding ι : K ↪→ C the representation ρ⊗OK ,ι C is unitary, then ρ has
finite image.

Proof. Indeed, for ι : K ↪→ C an embedding, let

ρι : Γ→ GLm(C)

be the corresponding representation ρ⊗OK ,ι C. First,

∏
ι

ρι : Γ→∏
ι

GLm(C)

has compact image by the definition of unitarity. Moreover, the image of

OK ↪→∏
ι

C

is discrete, since the difference of any two distinct elements of OK has norm
at least 1. Hence the image of ∏ι ρι is discrete and compact, and therefore
finite. �

Let K be a number field with ring of integers OK. Let (C, x1, · · · , xn) be an
analytically general hyperbolic n-pointed curve of genus g, and let V be a
OK-local system on C \ {x1, · · · , xn}with infinite monodromy, and unipotent
monodromy about the xi. Suppose that for each embedding ι : OK ↪→ C,
V⊗OK ,ι C underlies a polarizable complex variation of Hodge structure. Our
goal is to prove Theorem 1.2.4, which states that

rkOK(V) ≥ 2
√

g + 1.

Proof of Theorem 1.2.4. We use Tg,n to denote the universal cover of Mg,n.
For a fixed representation ρ : π1(C \ {x1, · · · , xn})) → GLm(OK) let Tρ

denote the set of [(C′, x′1, · · · , x′n)] ∈ Tg,n, for which the associated OK-local
system V has the following property: for each embedding ι : OK ↪→ C,
V⊗OK ,ι C underlies a polarizable complex variation of Hodge structure on
C′ \ {x′1, . . . , x′n}. Let Mρ denote the image of Tρ under the covering map
Tg,n →Mg,n.

Our goal is to show that an analytically very general point of Mg,n lies
in the complement of the union of the Mρ, where ρ ranges over the set of
representations of π1(C \ {x1, · · · , xn})→ GLr(OK), with infinite image, for
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K a number field, and r < 2
√

g + 1. Since there are only countably many
such representations ρ, it is enough to show that an analytically very gen-
eral point lies in the complement of Mρ. Since (C, x1, . . . , xn) is hyperbolic,
Tg,n →Mg,n is a covering space of countable degree, and so the image of a
closed analytic set is locally contained in a countable union of closed analytic
subsets. It therefore suffices to show that for any ρ with infinite monodromy
and rank < 2

√
g + 1, Tρ is contained in a closed analytic subset of Tg,n.

We now show such Tρ as above are contained in a closed analytic subset
of Tg,n. Indeed, suppose V is the local system associated to ρ on some
curve C \ {x1, · · · , xn}, and that for each embedding ι : OK ↪→ C, V⊗OK ,ι C,
underlies a polarizable complex variation of Hodge structure. It is enough to
show this complex polarizable variation of Hodge structure does not extend
to an analytically general nearby curve. Indeed, if it did, Theorem 1.2.8
implies ∏ι:OK→C ρι has unitary monodromy, and Lemma 6.1.4 implies its
monodromy is finite. This contradicts our assumption that ρ has infinite
monodromy. �

6.1.5.

Proof of Corollary 1.2.6. Let g ≥ 2 be an integer and let (C, x1, · · · , xn) be an
analytically general hyperbolic n-pointed curve of genus g. Let f : X →
C \ {x1, · · · , xn} be a smooth proper morphism, i ≥ 0 is an integer, and
V ⊂ Ri f∗C is a sub-local system with infinite monodromy and unipotent
monodromy about the xi. Then we wish to show that dimC V ≥ 2

√
g + 1.

It suffices to show that V satisfies the hypotheses of Theorem 1.2.4. The ex-
istence of an OK-structure follows from the fact that Ri f∗C has a Z-structure.
Let W be the corresponding OK-local system. All that remains is to verify
that for each embedding ι : OK ↪→ C, the corresponding complex local sys-
tem W⊗OK ,ι C underlies a polarizable complex variation of Hodge structure.
But each such embedding yields a summand of Ri f∗C, Galois-conjugate to
the original embedding W ⊂ V ⊂ Ri f∗C. Any such summand underlies a
polarizable variation, by Proposition 3.1.5(2), which completes the proof. �

7. QUESTIONS

7.1. Bounds.

Question 7.1.1. Is the bound of 2
√

g + 1 appearing in Corollary 1.3.6, Theo-
rem 1.2.4 and Theorem 1.2.8 sharp? If not, can one explicitly construct low
rank geometric variations of Hodge structure with infinite monodromy on a
general curve or general n-pointed curve? Do there exist counterexamples to
the above results if one replaces 2

√
g + 1 by a linear function of g?
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We have no reason to believe the bound is sharp. The Kodaira-Parshin trick
(as used in §4, for example) is one source of variations of Hodge structure on
Mg,n of rank bounded in terms of g, n, but it is not the only one. For example,
the representations constructed in [KS16] are cohomologically rigid and
hence underlie integral variations of Hodge structure by [EG18, Theorem
1.1] and [Sim92, Theorem 3]; on Simpson’s motivicity conjecture ([Sim92,
Conjecture, p. 9]) they are geometric in nature, though this is not clear from
the construction. Of course it would be extremely interesting to prove that
these representations arise from algebraic geometry.

It appears that the representations constructed in [KS16] have rank grow-
ing exponentially in g; it is natural, given our results, to ask if one can use
their methods to produce representations of smaller rank.

We also raise a related question about bounds on maps to the moduli space
of curves.

Question 7.1.2. Fix an integer g ≥ 2. What is the smallest integer h ≥ 2 for
which the generic genus g curve, i.e., the generic fiber of Mg,1 →Mg, has a
non-constant map to Mh?

Remark 7.1.3. Since a map C →Mh corresponds to a family of semistable
curves of genus h over C, by considering the associated family of Jacobians,
it follows from Corollary 1.2.7 that h ≥

√
g + 1. The Kodaira-Parshin trick

Proposition 4.1.1 does not a priori apply to construct maps from the generic
curve to Mh, because as written it produces disconnected covers. But one can
apply a variant where one takes a cover defined by a characteristic quotient
of the fundamental group to show there is some (fairly large) value of h for
which the generic genus g curve has a non-constant map to Mh. See [McM00,
Theorem 1.4] for more details.

7.2. A parabolic variant. There are variants for all of the background ap-
pearing in §2 and §3 when (V, Vp,q, D) in Proposition 3.1.5 is only assumed
to have quasi-unipotent monodromy about the components of Z, where we
replace Chern classes with parabolic Chern classes, polystability with parabolic
polystability, and so on.

Question 7.2.1. Can one extend the results of this paper to the parabolic
setting?

Remark 7.2.2. We suspect such an extension would likely come at the cost
of introducing a dependency of the bounds appearing in the main theorems
on the number of parabolic points. It may also be cleaner to phrase some of
the extensions in the equivalent language of stacky curves.

7.3. Non-abelian Hodge loci. Let (C, x1, · · · , xn) be an n-pointed curve and
V a Z-local system on C \ {x1, · · · , xn} with (quasi)-unipotent monodromy
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about the xi, and let (E ,∇) be the associated flat vector bundle. We refer to
the locus HV in Tg,n where the corresponding isomonodromic deformation
of (E ,∇) underlies a polarizable variation of Hodge structure as an non-
abelian Hodge locus. By analogy to the famous result on algebraicity of Hodge
loci of Cattani-Deligne-Kaplan [CDK95], it is natural to ask:

Question 7.3.1 (Compare to [Sim97, Conjecture 12.3]). Let Z be an irre-
ducible component of HV. Is the image of Z in Mg,n algebraic?

This would follow if all Z-local systems which underlie polarizable vari-
ations of Hodge structure arise from geometry, which is perhaps a folk
conjecture (and is conjectured explicitly in [Sim97, Conjecture 12.4]). Just as
[CDK95] provides evidence for the Hodge conjecture, a positive answer to
Question 7.3.1 would provide evidence for this conjecture.

When we refer to an analytically very general curve, in Theorem 1.2.4, we
mean in the sense of Definition 1.2.2. A positive answer to Question 7.3.1
would allow us to replace this with the usual algebraic notion of a very
general curve in Theorem 1.2.4. It seems plausible that one can make this
replacement in Corollary 1.2.6 without requiring input from Question 7.3.1,
using the main result of [CDK95].

REFERENCES

[Ara19] Donu Arapura. Kodaira–Saito vanishing via Higgs bundles in positive character-
istic. Journal für die reine und angewandte Mathematik (Crelles Journal), 2019(755):293–
312, 2019.

[Ati57] Michael Francis Atiyah. Complex analytic connections in fibre bundles. Transac-
tions of the American Mathematical Society, 85(1):181–207, 1957.

[BHH16] Indranil Biswas, Viktoria Heu, and Jacques Hurtubise. Isomonodromic defor-
mations of logarithmic connections and stability. Math. Ann., 366(1-2):121–140,
2016.

[BHH17] Indranil Biswas, Viktoria Heu, and Jacques Hurtubise. Isomonodromic deforma-
tions and very stable vector bundles of rank two. Comm. Math. Phys., 356(2):627–
640, 2017.

[BHH20] Indranil Biswas, Viktoria Heu, and Jacques Hurtubise. Isomonodromic deforma-
tions of logarithmic connections and stable parabolic vector bundles. Pure Appl.
Math. Q., 16(2):191–227, 2020.

[BHH21] Indranil Biswas, Viktoria Heu, and Jacques Hurtubise. Isomonodromic defor-
mations of irregular connections and stability of bundles. Comm. Anal. Geom.,
29(1):1–18, 2021.

[Bol95] AA Bolibruch. The Riemann-Hilbert problem and Fuchsian differential equations
on the Riemann sphere. In Proceedings of the International Congress of Mathemati-
cians, pages 1159–1168. Springer, 1995.

[BPGN97] L. Brambila-Paz, I. Grzegorczyk, and P. E. Newstead. Geography of Brill-Noether
loci for small slopes. J. Algebraic Geom., 6(4):645–669, 1997.

[CD17] Fabrizio Catanese and Michael Dettweiler. Answer to a question by Fujita on
variation of Hodge structures. In Higher dimensional algebraic geometry—in honour



ISOMONODROMY, STABILITY, AND HODGE THEORY 35

of Professor Yujiro Kawamata’s sixtieth birthday, volume 74 of Adv. Stud. Pure Math.,
pages 73–102. Math. Soc. Japan, Tokyo, 2017.

[CDK95] Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan. On the locus of Hodge
classes. Journal of the American Mathematical Society, 8(2):483–506, 1995.

[CKS86] Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid. Degeneration of Hodge
structures. Annals of Mathematics, 123(3):457–535, 1986.

[CMSP17] James Carlson, Stefan Müller-Stach, and Chris Peters. Period mappings and period
domains, volume 168 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2017. Second edition of [ MR2012297].
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[Del87] Pierre Deligne. Un théoreme de finitude pour la monodromie. In Discrete groups
in geometry and analysis, pages 1–19. Springer, 1987.

[dF13] Michele de Franchis. Un teorema sulle involuzioni irrazionali. Rendiconti del
Circolo Matematico di Palermo (1884-1940), 36(1):368–368, 1913.

[Dor01] Charles F. Doran. Algebraic and geometric isomonodromic deformations. J.
Differential Geom., 59(1):33–85, 2001.

[EG18] Hélène Esnault and Michael Groechenig. Cohomologically rigid local systems
and integrality. Selecta Mathematica, 24(5):4279–4292, 2018.

[EV86] Hélene Esnault and Eckart Viehweg. Logarithmic de Rham complexes and
vanishing theorems. Inventiones mathematicae, 86(1):161–194, 1986.

[EV99] Hélene Esnault and Eckart Viehweg. Semistable bundles on curves and irre-
ducible representations of the fundamental group. Contemporary mathematics,
241:129–140, 1999.

[FM12] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of
Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

[Gri70] Phillip A Griffiths. Periods of integrals on algebraic manifolds, III (Some
global differential-geometric properties of the period mapping). Publications
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401–426. Birkhäuser Boston, Boston, MA, 1983.
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