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1. The Unimodality Theorem

Recall that gn,k was defined to be the number of unlabeled graphs with n vertices
and k edges; we wish to show that for fixed n, the sequence gn,k is unimodal. The
idea will to be to construct an sl2-representation such that the gn,k appear as
dimensions of H-eigenspaces. By Problem 11 of the first problem set, this will
suffice.

We fix n, and let Wn be the vector space on the set of labelled graphs on the
vertices {1, · · · , n}. That is, if Gn is the set of labelled graphs on the vertices
{1, · · · , N},

Wn =
⊕

H∈Gn

CH.

Put another way, Wn is the set of C-valued functions on Gn. The symmetric group
Sn acts on Gn by permuting the labels of a labelled graph, and hence acts on Wn.
We let Wn,k ⊂ Wn be the subspace spanned by R ∈ Gn such that R has k edges.
Observe that Wn,k is a subrepresentation, i.e. it is preserved by the action of Sn.

Problem 1.* Let G be a finite group and V a complex vector space. A repre-
sentation of G is a homomorphism ρ : G→ GL(V ). (a) Prove Maschke’s theorem:
If W ⊂ V is a subrepresentation (i.e. a subspace preserved by the action of G on
V ), show that there exists another subrepresentation U ⊂ V so that V = W ⊕ U .
Hint: Pick any projection of V onto W , and average it under the action of G. Let
U be the kernel of the G-equivariant projection thus obtained. (b) Let

V G = {v ∈ V | gv = v for all g ∈ G}.

Let

VG = V/ Span{gv − v | v ∈ V, g ∈ G}.

Show that the natural map

V G → VG

is an isomorphism. Hint: Use Maschke’s theorem.
Problem 2.* Show that

gn,k = dimWSn

n,k.

Hint: Use 1(b).
We now define an action of sl2(C) on Wn. Let ei,j : W →W be the operator

ei,j : R 7→

{
R ∪ (i, j) if (i, j) 6∈ R
0 otherwise
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i.e. ei,j adds an edge to R between vertices i and j if there isn’t one there already,
and sends R to 0 otherwise. Let fi,j be the operator

fi,j : R 7→

{
R \ (i, j) if (i, j) ∈ R
0 otherwise

i.e. fi,j removes the edge between i and j if such an edge exists, and sends R to 0
otherwise.

Problem 3. Show that if {s, t} 6= {u, v},

[es,t, fu,v] = 0,

and

[es,t, fs,t]R =

{
R if (s, t) is an edge in R

−R otherwise.

We set

E =
∑
i<j

ei,j

and

F =
∑
i<j

fi,j .

Problem 4. Show that for R a labelled graph with n vertices and k edges,

[E,F ](R) =

(
2k −

(
n

2

))
R.

Thus we set Hk : Wn,k →Wn,k equal the operator

Hk : R 7→
(

2k −
(
n

2

))
R,

and

H =
⊕
k

Hk.

(Here H is an operator H : Wn →Wn.)
Problem 5. We have already checked that [E,F ] = H. Verify the other two

commutation relations for sl2(C), i.e. that

[H,F ] = −2F, [H,E] = 2E.

Problem 6.* Show that the action of sl2(C) on Wn commutes with the action
of Sn, and so we get an action of sl2 on

WSn
n =

⊕
k

WSn

n,k.

Deduce that the sequence {gn,k} (for fixed n and varying k) is unimodal.
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2. Supplements

Problem 7.** Let Pkl(n) be the number of ways of partitioning n into at most
k pieces, each of which has size at most l. Use a similar method to show that for
fixed k and l, the sequence

Pkl(n)

is unimodal.
Problem 8. If V,W are representations of a Lie algebra g, we let g act on V ⊗W

via the Liebniz rule
A(v ⊗ w) = (Av)⊗ w + v ⊗ (Aw).

Show that this is indeed a Lie algebra representation on V ⊗W .
Problem 9.* The inclusion sl2 → gl2 gives a canonical 2-dimensional represen-

tation of sl2; let us call it V . Show that as a sl2-representation,

Wn ' V ⊗(n
2).

Show that the Sn-action on Wn above may be understood as the natural action of

Sn on V ⊗(n
2) via the natural action of Sn on the set of 2-element sets of a n-element

set.


