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Motivation: Riemann Zeta Function

Consider the Riemann zeta function

ζ(s) =
∑
n⊆Z
ideal

1

ns
=
∏
p⊆Z
prime

1

1− p−s
<(s) > 1

Let ΓR(s) = π−
s
2 Γ( s2).

Theorem
The completed zeta function Z (s) = ΓR(s)ζ(s) admits an analytic
continuation with a simple pole at s = 1 with residue 1, and
satisfies the functional equation

π−
s
2 Γ( s2)ζ(s) = π−

1−s
2 Γ(1−s2 )ζ(1− s)
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Motivation: Dedekind Zeta Function

Let K be a number field with r1 and r2 real and complex places
and discriminant ∆K . Consider the Dedekind zeta function

ζK (s) =
∑
n⊆OK
ideal

1

NmK/Q(n)s
=
∏

p⊆OK
prime

1

1−NmK/Q(p)−s
<(s) > 1

Let ΓR(s) = π−
s
2 Γ( s2) and ΓC(s) = 2(2π)−sΓ(s).

Theorem
The completed zeta function ZK (s) = |∆K |−

s
2 ΓR(s)r1ΓC(s)r2ζK (s)

admits an analytic continuation with a simple pole at s = 1 with
residue κK given by the class number formula, and satisfies the
functional equation

|∆K |−
s
2 ΓR(s)r1ΓC(s)r2ζK (s) = |∆K |−

1−s
2 ΓR(1− s)r1ΓC(1− s)r2ζK (1− s)
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Motivation: Dirichlet L-Functions

Let χ : Z→ C be a Dirichlet character with modulus N. Consider
the Dirichlet L-function

`(χ, s) =
∑
n⊆Z
ideal

χ(n)

ns
=
∏
p⊆Z
prime

1

1− χ(p)p−s
<(s) > 1

Let ΓR(χ, s) = π−
s
2 Γ( s2) for χ(−1) = 1 (even) and

ΓR(χ, s) = π−
s+1
2 Γ( s+1

2 ) for χ(−1) = −1 (odd).

Theorem
The completed L-function L(χ, s) = N

s
2 ΓR(χ, s)`(χ, s) admits an

analytic continuation with a simple pole at s = 1 with residue
ϕ(N)
N when χ is principal, and satisfies the functional equation

N
s
2 ΓR(χ, s)`(s, χ) = ε(χ)N

1−s
2 ΓR(χ, 1− s)`(χ−1, 1− s)

with |ε(χ)| = 1, ε(χ)ε(χ−1) = 1.
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Adeles

Let K be a number field with ring of integers OK . For v a place of
K let Kv be the completion of K at v with valuation ring Ov . Let
AK be the adele ring of K :

AK =
∏̂
v -∞

Ov

Kv ×
∏
v |∞

Kv

Consisting of (xv )v ∈
∏

v Kv such that xv ∈ Ov for all but finitely
many finite places v of K .

Let IK = A×K be the idele group of K :

IK =
∏̂
v -∞

O×v
K×v ×

∏
v |∞

K×v

Consisting of (xv )v ∈
∏

v K
×
v such that xv ∈ O×v for all but finitely

many finite places v of K .
We have diagonal embeddings K ⊆ AK and K× ⊆ IK .
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Adeles

The local fields Kv with the usual topology are locally compact
Abelian groups which are Pontryagin self-dual in the sense that
K̂v = Hom(Kv ,U(1)) = Kv .

Consider the restricted product
topology on the adele ring AK generated by restricted open
rectangles

U =
∏
v∈S

Uv ×
∏
v 6∈S
Ov

for S a finite subset of the set of places of K , with Uv ⊆ Kv open.
Then AK is a locally compact Abelian group which is Pontryagin
self-dual in the sense that ÂK = Hom(AK ,U(1)) = AK .
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Adeles

Let I+K = {x ∈ IK | |x | ≥ 1}, I−K = {x ∈ IK | |x | ≤ 1} and
I1K = I+K ∩ I−K = {x ∈ IK | |x | = 1}.
The quotient I1K/K× is compact (Fujisaki’s compactness lemma),
which implies finiteness of class number for K and Dirichlet’s unit
theorem for OK .

Theorem
Let d×x be a Haar measure on IK normalized with µ(IK/K×) = 1.
Then the volume µ(I1K/K×) is given by the class number formula

µ(I1K/K×) = κK =
2r1(2π)r2hKRK√
|∆K |wK

where hK is the class number of K , where RK is the Borel
regulator of K , where wK is the number of roots of unity in K .
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Schwartz Functions

Definition
For v an Archimedean place of K let S(Kv ) denote the space of
Schwartz functions on Kv : the C-vector space of smooth
functions f : Kv → C such that f (n) : Kv → C has rapid decay for
all n ≥ 0.

Definition
For v a finite place of K let S(Kv ) denote the space of
Bruhat-Schwartz functions on Kv : the C-vector space of
compactly supported locally constant functions f : Kv → C.

Definition
Let S(AK ) denote the space of Bruhat-Schwarz functions on
AK : the C-vector space of finite C-linear combinations of
monomial Bruhat-Schwartz functions f : AK → C, namely
f =

∏
v fv for fv ∈ S(Kv ) with fv = χOv for all but finitely many

finite places v of K .
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Global Fourier Transform

Let χ : AK → C× be a nontrivial character trivial on the diagonal
K ⊆ AK , yielding a nontrivial character χ : AK/K → C×.

Definition
For f ∈ S(AK ) define the global Fourier transform

f̂ (ξ) =

∫
AK

χ(ξx)f (x)dx

(
f (x) =

∫
AK

χ(ξx)f̂ (ξ)dξ

)
with Haar measure dx and dξ normalized with µ(AK/K ) = 1.

Theorem
(Global Poisson Summation) For f ∈ S(AK ) we have∑

x∈K
f (x) =

∑
ξ∈K

f̂ (ξ)
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Global Theta Functions

For f ∈ S(AK ) consider the global theta function

θf (x) =
∑
α∈K

f (αx)

With change of measure d×v (αx ) = 1
|x |v d

×
v α hence d×(αx ) = 1

|x |d
×α∫

AK

χ(ξα)f (αx)dα =
1

|x |

∫
AK

χ(ξ αx )f (α)dα =
1

|x |
f̂ ( ξx )

We obtain the functional equation for the global theta function

θf (x) =
∑
α∈K

f (αx) =
1

|x |
∑
α∈K

f̂ (αx ) =
1

|x |
θ
f̂
( 1
x )
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Global Zeta Integrals

Let χ : IK → C× be a character trivial on the diagonal K× ⊆ IK ,
yielding a Hecke character χ : IK/K× → C×. Suppose moreover
that χ is trivial on the diagonal R>0 in Archimedean places in IK .

Definition
For f ∈ S(AK ) define the global zeta integral

Zf (χ, s) =

∫
IK
|x |sχ(x)f (x)d×x <(s) > 1

with Haar measure d×x normalized with µ(IK/K×) = 1.
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Global Zeta Integrals

Definition
For v a place of K and fv ∈ S(Kv ) define the local zeta integral

Zfv (χv , s) =

∫
K×v

|x |svχv (x)fv (x)d×v x

with Haar measure d×v x normalized with µ(IK/K×) = 1.

For f =
∏

v fv a monomial Schwartz function

Zf (s) =

∫
IK
|x |sχ(x)f (x)d×x

=
∏
v

∫
K×v

|x |svχv (x)fv (x)d×v x =
∏
v

Zfv (s) <(s) > 1



Global Zeta Integrals

Definition
For v a place of K and fv ∈ S(Kv ) define the local zeta integral

Zfv (χv , s) =

∫
K×v

|x |svχv (x)fv (x)d×v x

with Haar measure d×v x normalized with µ(IK/K×) = 1.

For f =
∏

v fv a monomial Schwartz function

Zf (s) =

∫
IK
|x |sχ(x)f (x)d×x

=
∏
v

∫
K×v

|x |svχv (x)fv (x)d×v x =
∏
v

Zfv (s) <(s) > 1



Zeta Integrals: Functional Equation

We now analyze the global zeta integral Zf (χ, s) in order to
establish the analytic continuation and functional equation.
For x ∈ IK and f ∈ S(AK ) let θ×f (x) = θf (x)− f (0).

Zf (χ, s) =

∫
IK
|x |sχ(x)f (x)d×x =

∫
IK/K×

∑
α∈K×

|αx |sχ(αx)f (αx)d×(αx)

=

∫
IK/K×

|x |sχ(x)
∑
α∈K×

f (αx)d×x =

∫
IK/K×

|x |sχ(x)θ×f (x)d×x

=

∫
I+K/K×

|x |sχ(x)θ×f (x)d×x +

∫
I−K /K×

|x |sχ(x)θ×f (x)d×x

The integral over I+K/K
× is entire. For the integral over I−K/K

× we
use the functional equation for the global theta function.



Zeta Integrals: Functional Equation

∫
I−K /K×

|x |sχ(x)θ×f (x)d×x =

∫
I+K/K×

| 1x |
sχ( 1

x )θ×f ( 1
x )d×( 1

x )

=

∫
I+K/K×

|x |−sχ−1(x)
(
|x |θ

f̂
(x)− f (0)

)
d×x =

∫
I+K/K×

|x |1−sχ−1(x)θ×
f̂
d×x

+ f̂ (0)

∫
I+K/K×

|x |sχ(x)d×x − f (0)

∫
I+K/K×

|x |1−sχ−1(x)d×x

The last terms being pole terms.

The integral over I+K/K
× is

entire. Since µ(I1K/K×) = 1 we can evaluate:

f̂ (0)

∫
I+K/K×

|x |sχ(x)d×x = f̂ (0)µ(I1K/K×)

∫ ∞
1

x1−s
dx

x
= κK

f̂ (0)

s − 1

f (0)

∫
I+K/K×

|x |1−sχ−1(x)d×x = f (0)µ(I1K/K×)

∫ ∞
1

x−s
dx

x
= κK

f (0)

s
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Zeta Integrals: Functional Equation

Putting it all together, we obtain

Zf (χ, s) =

∫
I+K/K×

(
|x |sχ(x)θ×f (x) + |x |1−sχ−1(x)θ×

f̂
(x)
)
d×x + κK

f̂ (0)

s − 1
− κK

f (0)

s

The integral over I+K/K
× is entire, hence we have proved analytic

continuation of Zf (χ, s).
The above expression is symmetric in s 7→ 1− s, f 7→ f̂ , and
χ 7→ χ−1 so we obtain the functional equation

Zf (χ, s) = Z
f̂
(χ−1, 1− s)

hence we have proved the functional equation of Zf (χ, s).



Riemann Zeta Function: Local Factors

For v =∞ an Archimedean place of Q take f∞(x) = e−πx
2

the
Gaussian function. Then f̂∞ = f∞ and we have

Zf∞(s) =

∫
R×
|x |s∞f∞(x)d×∞x =

∫
R
|x |s−1∞ f∞(x)d∞x = π−

s
2 Γ( s2)

For v = p a finite place of Q take fp(x) = χZp the p-adic

Gaussian function. Then f̂p = fp and we have

Zfp(s) =

∫
Q×p
|x |spfp(x)d×p x =

∫
Zp

|x |spd×p x =
1

1− p−s

For f =
∏

v fv we obtain the completed Riemann zeta function

Zf (s) =

∫
A×Q
|x |s f (x)d×x = π−

s
2 Γ( s2)

∏
p

1

1− p−s
= π−

s
2 Γ( s2)ζ(s)
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Dedekind Zeta Function: Local Factors

For v an Archimedean place of K take fv (x) = e−πx
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the
Gaussian function. Then f̂v = fv and we have
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where ΓR(s) = π−
s
2 Γ( s2) and ΓC(s) = 2(2π)−sΓ(s).

For v a finite
place of K where Kv is unramified over Qv take fv (x) = χOv the
v-adic Gaussian function. Then f̂v = fv and we have

Zfv (s) =

∫
Kv

|x |sv fv (x)d×v x =

∫
Ov

|x |svd×v x =
1

1− q−sv

However for v a finite place of K where Kv is ramified over Qv

there is no fv ∈ S(Kv ) with f̂v = fv .
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Zfv (s) =

∫
Kv

|x |sv fv (x)d×v x =

∫
Ov

|x |svd×v x =
1

1− q−sv

However for v a finite place of K where Kv is ramified over Qv

there is no fv ∈ S(Kv ) with f̂v = fv .



Dedekind Zeta Function: Local Factors

For v a finite place of K where Kv is ramified over Qv take
fv (x) = χOv the v-adic Gaussian function. We have

Zfv (s) =
[O×v : Ov ]−

1
2

1− q−sv
Z
f̂v

(s) =
[O×v : Ov ]s−

1
2

1− q−sv

Now Zf (s) = |∆K |−
1
2 ΓR(s)r1ΓC(s)r2ζK (s) and

Z
f̂
(s) = |∆K |s−

1
2 ΓR(s)r1ΓC(s)r2ζK (s).

Since Zf (s) = Z
f̂
(1− s)

|∆K |−
1
2 ΓR(s)r1ΓC(s)r2ζK (s) = |∆K |(1−s)−

1
2 ΓR(1− s)r1ΓC(1− s)r2ζK (1− s)

Dividing by |∆K |−
s+1
2 we obtain the functional equation

|∆K |−
s
2 ΓR(s)r1ΓC(s)r2ζK (s) = |∆K |−

1−s
2 ΓR(1− s)r1ΓC(1− s)r2ζK (1− s)
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