Tate's Thesis: L-Functions and Harmonic Analysis on the Adeles

Aleksander Shmakov

University of Georgia

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$
\zeta(s)=\sum_{\substack{n \subseteq \mathbb{Z} \\ \text { ideal }}} \frac{1}{n^{s}}=\prod_{\substack{p \subseteq \mathbb{Z} \\ \text { prime }}} \frac{1}{1-p^{-s}} \quad \Re(s)>1
$$

Let $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$.

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$
\zeta(s)=\sum_{\substack{n \subseteq \mathbb{Z} \\ \text { ideal }}} \frac{1}{n^{s}}=\prod_{\substack{p \subseteq \mathbb{Z} \\ \text { prime }}} \frac{1}{1-p^{-s}} \quad \Re(s)>1
$$

Let $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$.
Theorem
The completed zeta function $Z(s)=\Gamma_{\mathbb{R}}(s) \zeta(s)$ admits an analytic continuation with a simple pole at $s=1$ with residue 1 , and satisfies the functional equation

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

Motivation: Dedekind Zeta Function

Let K be a number field with r_{1} and r_{2} real and complex places and discriminant Δ_{K}. Consider the Dedekind zeta function
$\zeta_{K}(s)=\sum_{\substack{\mathfrak{n} \subseteq \mathcal{O}_{K} \\ \text { ideal }}} \frac{1}{\operatorname{Nm}_{K / \mathbb{Q}}(\mathfrak{n})^{s}}=\prod_{\substack{\mathfrak{p} \subseteq \mathcal{O}_{K} \\ \text { prime }}} \frac{1}{1-\operatorname{Nm}_{K / \mathbb{Q}}(\mathfrak{p})^{-s}} \quad \Re(s)>1$
Let $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$.

Motivation: Dedekind Zeta Function

Let K be a number field with r_{1} and r_{2} real and complex places and discriminant Δ_{K}. Consider the Dedekind zeta function

$$
\zeta_{K}(s)=\sum_{\substack{\mathfrak{n} \subseteq \mathcal{O}_{K} \\ \text { ideal }}} \frac{1}{\operatorname{Nm}_{K / \mathbb{Q}}(\mathfrak{n})^{s}}=\prod_{\substack{\mathfrak{p} \subseteq \mathcal{O}_{K} \\ \text { prime }}} \frac{1}{1-\operatorname{Nm}_{K / \mathbb{Q}}(\mathfrak{p})^{-s}} \quad \Re(s)>1
$$

Let $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$.
Theorem
The completed zeta function $Z_{K}(s)=\left|\Delta_{K}\right|^{-\frac{s}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)$ admits an analytic continuation with a simple pole at $s=1$ with residue κ_{K} given by the class number formula, and satisfies the functional equation

$$
\left|\Delta_{K}\right|^{-\frac{s}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)=\left|\Delta_{K}\right|^{-\frac{1-s}{2}} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)
$$

Motivation: Dirichlet L-Functions

Let $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ be a Dirichlet character with modulus N. Consider the Dirichlet L-function

$$
\ell(\chi, s)=\sum_{\substack{n \subseteq \mathbb{Z} \\ \text { ideal }}} \frac{\chi(n)}{n^{s}}=\prod_{\substack{p \subseteq \mathbb{Z} \\ \text { prime }}} \frac{1}{1-\chi(p) p^{-s}} \quad \Re(s)>1
$$

$$
\begin{aligned}
& \text { Let } \Gamma_{\mathbb{R}}(\chi, s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \text { for } \chi(-1)=1 \text { (even) and } \\
& \Gamma_{\mathbb{R}}(\chi, s)=\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right) \text { for } \chi(-1)=-1 \text { (odd). }
\end{aligned}
$$

Motivation: Dirichlet L-Functions

Let $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ be a Dirichlet character with modulus N. Consider the Dirichlet L-function

$$
\ell(\chi, s)=\sum_{\substack{n \subseteq \mathbb{Z} \\ \text { ideal }}} \frac{\chi(n)}{n^{s}}=\prod_{\substack{p \subseteq \mathbb{Z} \\ \text { prime }}} \frac{1}{1-\chi(p) p^{-s}} \quad \Re(s)>1
$$

Let $\Gamma_{\mathbb{R}}(\chi, s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$ for $\chi(-1)=1$ (even) and
$\Gamma_{\mathbb{R}}(\chi, s)=\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)$ for $\chi(-1)=-1$ (odd).
Theorem
The completed L-function $L(\chi, s)=N^{\frac{s}{2}} \Gamma_{\mathbb{R}}(\chi, s) \ell(\chi, s)$ admits an analytic continuation with a simple pole at $s=1$ with residue $\frac{\varphi(N)}{N}$ when χ is principal, and satisfies the functional equation

$$
N^{\frac{s}{2}} \Gamma_{\mathbb{R}}(\chi, s) \ell(s, \chi)=\varepsilon(\chi) N^{\frac{1-s}{2}} \Gamma_{\mathbb{R}}(\chi, 1-s) \ell\left(\chi^{-1}, 1-s\right)
$$

with $|\varepsilon(\chi)|=1, \varepsilon(\chi) \varepsilon\left(\chi^{-1}\right)=1$.

Adeles

Let K be a number field with ring of integers \mathcal{O}_{K}. For v a place of K let K_{v} be the completion of K at v with valuation ring \mathcal{O}_{v}. Let \mathbb{A}_{K} be the adele ring of K :

$$
\mathbb{A}_{K}=\prod_{v \nmid \infty}^{\mathcal{O}_{v}} K_{v} \times \prod_{v \mid \infty} K_{v}
$$

Consisting of $\left(x_{v}\right)_{v} \in \prod_{v} K_{v}$ such that $x_{v} \in \mathcal{O}_{v}$ for all but finitely many finite places v of K.

Adeles

Let K be a number field with ring of integers \mathcal{O}_{K}. For v a place of K let K_{v} be the completion of K at v with valuation ring \mathcal{O}_{v}. Let \mathbb{A}_{K} be the adele ring of K :

$$
\mathbb{A}_{K}=\prod_{v \nmid \infty}^{\mathcal{O}_{v}} K_{v} \times \prod_{v \mid \infty} K_{v}
$$

Consisting of $\left(x_{v}\right)_{v} \in \prod_{v} K_{v}$ such that $x_{v} \in \mathcal{O}_{v}$ for all but finitely many finite places v of K. Let $\mathbb{I}_{K}=\mathbb{A}_{K}^{\times}$be the idele group of K :

$$
\mathbb{I}_{K}=\prod_{v \nmid \infty}^{\mathcal{O}_{v}^{\times}} K_{v}^{\times} \times \prod_{v \mid \infty} K_{v}^{\times}
$$

Consisting of $\left(x_{v}\right)_{v} \in \prod_{v} K_{v}^{\times}$such that $x_{v} \in \mathcal{O}_{v}^{\times}$for all but finitely many finite places v of K.
We have diagonal embeddings $K \subseteq \mathbb{A}_{K}$ and $K^{\times} \subseteq \mathbb{I}_{K}$.

Adeles

The local fields K_{v} with the usual topology are locally compact Abelian groups which are Pontryagin self-dual in the sense that $\widehat{K}_{v}=\operatorname{Hom}\left(K_{v}, \mathrm{U}(1)\right)=K_{v}$.

Adeles

The local fields K_{v} with the usual topology are locally compact Abelian groups which are Pontryagin self-dual in the sense that $\widehat{K}_{v}=\operatorname{Hom}\left(K_{v}, \mathrm{U}(1)\right)=K_{v}$. Consider the restricted product topology on the adele ring \mathbb{A}_{K} generated by restricted open rectangles

$$
U=\prod_{v \in S} U_{v} \times \prod_{v \notin S} \mathcal{O}_{v}
$$

for S a finite subset of the set of places of K, with $U_{v} \subseteq K_{v}$ open. Then \mathbb{A}_{K} is a locally compact Abelian group which is Pontryagin self-dual in the sense that $\widehat{\mathbb{A}}_{K}=\operatorname{Hom}\left(\mathbb{A}_{K}, U(1)\right)=\mathbb{A}_{K}$.

Adeles

Let $\mathbb{I}_{K}^{+}=\left\{x \in \mathbb{I}_{K}| | x \mid \geq 1\right\}, \mathbb{I}_{K}^{-}=\left\{x \in \mathbb{I}_{K}| | x \mid \leq 1\right\}$ and $\mathbb{I}_{K}^{1}=\mathbb{I}_{K}^{+} \cap \mathbb{I}_{K}^{-}=\left\{x \in \mathbb{I}_{K}| | x \mid=1\right\}$.
The quotient $\mathbb{I}_{K}^{1} / K^{\times}$is compact (Fujisaki's compactness lemma), which implies finiteness of class number for K and Dirichlet's unit theorem for \mathcal{O}_{K}.

Adeles

Let $\mathbb{I}_{K}^{+}=\left\{x \in \mathbb{I}_{K}| | x \mid \geq 1\right\}, \mathbb{I}_{K}^{-}=\left\{x \in \mathbb{I}_{K}| | x \mid \leq 1\right\}$ and $\mathbb{I}_{K}^{1}=\mathbb{I}_{K}^{+} \cap \mathbb{I}_{K}^{-}=\left\{x \in \mathbb{I}_{K}| | x \mid=1\right\}$.
The quotient $\mathbb{I}_{K}^{1} / K^{\times}$is compact (Fujisaki's compactness lemma), which implies finiteness of class number for K and Dirichlet's unit theorem for \mathcal{O}_{K}.

Theorem

Let $\mathrm{d}^{\times} X$ be a Haar measure on \mathbb{I}_{K} normalized with $\mu\left(\mathbb{I}_{K} / K^{\times}\right)=1$. Then the volume $\mu\left(\mathbb{I}_{K}^{1} / K^{\times}\right)$is given by the class number formula

$$
\mu\left(\mathbb{I}_{K}^{1} / K^{\times}\right)=\kappa_{K}=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{\sqrt{\left|\Delta_{K}\right|} w_{K}}
$$

where h_{K} is the class number of K, where R_{K} is the Borel regulator of K, where w_{K} is the number of roots of unity in K.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}\left(K_{v}\right)$ denote the space of Schwartz functions on K_{v} : the \mathbb{C}-vector space of smooth functions $f: K_{v} \rightarrow \mathbb{C}$ such that $f^{(n)}: K_{v} \rightarrow \mathbb{C}$ has rapid decay for all $n \geq 0$.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}\left(K_{v}\right)$ denote the space of Schwartz functions on K_{v} : the \mathbb{C}-vector space of smooth functions $f: K_{v} \rightarrow \mathbb{C}$ such that $f^{(n)}: K_{v} \rightarrow \mathbb{C}$ has rapid decay for all $n \geq 0$.

Definition
For v a finite place of K let $\mathcal{S}\left(K_{v}\right)$ denote the space of
Bruhat-Schwartz functions on K_{v} : the \mathbb{C}-vector space of compactly supported locally constant functions $f: K_{v} \rightarrow \mathbb{C}$.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}\left(K_{v}\right)$ denote the space of Schwartz functions on K_{v} : the \mathbb{C}-vector space of smooth functions $f: K_{v} \rightarrow \mathbb{C}$ such that $f^{(n)}: K_{v} \rightarrow \mathbb{C}$ has rapid decay for all $n \geq 0$.

Definition

For v a finite place of K let $\mathcal{S}\left(K_{v}\right)$ denote the space of
Bruhat-Schwartz functions on K_{v} : the \mathbb{C}-vector space of compactly supported locally constant functions $f: K_{v} \rightarrow \mathbb{C}$.

Definition

Let $\mathcal{S}\left(\mathbb{A}_{K}\right)$ denote the space of Bruhat-Schwarz functions on \mathbb{A}_{K} : the \mathbb{C}-vector space of finite \mathbb{C}-linear combinations of monomial Bruhat-Schwartz functions $f: \mathbb{A}_{K} \rightarrow \mathbb{C}$, namely $f=\prod_{v} f_{v}$ for $f_{v} \in \mathcal{S}\left(K_{v}\right)$ with $f_{v}=\chi_{\mathcal{O}_{v}}$ for all but finitely many finite places v of K.

Global Fourier Transform

Let $\chi: \mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$be a nontrivial character trivial on the diagonal $K \subseteq \mathbb{A}_{K}$, yielding a nontrivial character $\chi: \mathbb{A}_{K} / K \rightarrow \mathbb{C}^{\times}$.
Definition
For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ define the global Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{A}_{K}} \bar{\chi}(\xi x) f(x) \mathrm{d} x \quad\left(f(x)=\int_{\mathbb{A}_{K}} \chi(\xi x) \widehat{f}(\xi) \mathrm{d} \xi\right)
$$

with Haar measure $\mathrm{d} x$ and $\mathrm{d} \xi$ normalized with $\mu\left(\mathbb{A}_{K} / K\right)=1$.

Global Fourier Transform

Let $\chi: \mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$be a nontrivial character trivial on the diagonal $K \subseteq \mathbb{A}_{K}$, yielding a nontrivial character $\chi: \mathbb{A}_{K} / K \rightarrow \mathbb{C}^{\times}$.
Definition
For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ define the global Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{A}_{K}} \bar{\chi}(\xi x) f(x) \mathrm{d} x \quad\left(f(x)=\int_{\mathbb{A}_{K}} \chi(\xi x) \widehat{f}(\xi) \mathrm{d} \xi\right)
$$

with Haar measure $\mathrm{d} x$ and $\mathrm{d} \xi$ normalized with $\mu\left(\mathbb{A}_{K} / K\right)=1$.
Theorem
(Global Poisson Summation) For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ we have

$$
\sum_{x \in K} f(x)=\sum_{\xi \in K} \widehat{f}(\xi)
$$

Global Theta Functions

For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ consider the global theta function

$$
\theta_{f}(x)=\sum_{\alpha \in K} f(\alpha x)
$$

With change of measure $\mathrm{d}_{v}^{\times}\left(\frac{\alpha}{x}\right)=\frac{1}{|x|_{v}} \mathrm{~d}_{v}^{\times} \alpha$ hence $\mathrm{d}^{\times}\left(\frac{\alpha}{x}\right)=\frac{1}{|x|} \mathrm{d}^{\times} \alpha$

$$
\int_{\mathbb{A}_{K}} \bar{\chi}(\xi \alpha) f(\alpha x) \mathrm{d} \alpha=\frac{1}{|x|} \int_{\mathbb{A}_{K}} \bar{\chi}\left(\xi \frac{\alpha}{x}\right) f(\alpha) \mathrm{d} \alpha=\frac{1}{|x|} \widehat{f}\left(\frac{\xi}{x}\right)
$$

Global Theta Functions

For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ consider the global theta function

$$
\theta_{f}(x)=\sum_{\alpha \in K} f(\alpha x)
$$

With change of measure $\mathrm{d}_{v}^{\times}\left(\frac{\alpha}{x}\right)=\frac{1}{|x|_{v}} \mathrm{~d}_{v}^{\times} \alpha$ hence $\mathrm{d}^{\times}\left(\frac{\alpha}{x}\right)=\frac{1}{|x|} \mathrm{d}^{\times} \alpha$

$$
\int_{\mathbb{A}_{K}} \bar{\chi}(\xi \alpha) f(\alpha x) \mathrm{d} \alpha=\frac{1}{|x|} \int_{\mathbb{A}_{K}} \bar{\chi}\left(\xi \frac{\alpha}{\bar{\chi}}\right) f(\alpha) \mathrm{d} \alpha=\frac{1}{|x|} \widehat{f}\left(\frac{\xi}{x}\right)
$$

We obtain the functional equation for the global theta function

$$
\theta_{f}(x)=\sum_{\alpha \in K} f(\alpha x)=\frac{1}{|x|} \sum_{\alpha \in K} \widehat{f}\left(\frac{\alpha}{x}\right)=\frac{1}{|x|} \theta_{\widehat{f}}\left(\frac{1}{x}\right)
$$

Global Zeta Integrals

Let $\chi: \mathbb{I}_{K} \rightarrow \mathbb{C}^{\times}$be a character trivial on the diagonal $K^{\times} \subseteq \mathbb{I}_{K}$, yielding a Hecke character $\chi: \mathbb{I}_{K} / K^{\times} \rightarrow \mathbb{C}^{\times}$. Suppose moreover that χ is trivial on the diagonal $\mathbb{R}_{>0}$ in Archimedean places in \mathbb{I}_{K}.

Global Zeta Integrals

Let $\chi: \mathbb{I}_{K} \rightarrow \mathbb{C}^{\times}$be a character trivial on the diagonal $K^{\times} \subseteq \mathbb{I}_{K}$, yielding a Hecke character $\chi: \mathbb{I}_{K} / K^{\times} \rightarrow \mathbb{C}^{\times}$. Suppose moreover that χ is trivial on the diagonal $\mathbb{R}_{>0}$ in Archimedean places in \mathbb{I}_{K}.

Definition

For $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ define the global zeta integral

$$
Z_{f}(\chi, s)=\int_{\mathbb{I}_{K}}|x|^{s} \chi(x) f(x) \mathrm{d}^{\times} x \quad \Re(s)>1
$$

with Haar measure $\mathrm{d}^{\times} \times$normalized with $\mu\left(\mathbb{I}_{K} / K^{\times}\right)=1$.

Global Zeta Integrals

Definition
For v a place of K and $f_{v} \in \mathcal{S}\left(K_{v}\right)$ define the local zeta integral

$$
Z_{f_{v}}\left(\chi_{v}, s\right)=\int_{K_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) \mathrm{d}_{v}^{\times} x
$$

with Haar measure $\mathrm{d}_{v}^{\times} \times$normalized with $\mu\left(\mathbb{I}_{K} / K^{\times}\right)=1$.

Global Zeta Integrals

Definition

For v a place of K and $f_{v} \in \mathcal{S}\left(K_{v}\right)$ define the local zeta integral

$$
Z_{f_{v}}\left(\chi_{v}, s\right)=\int_{K_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) \mathrm{d}_{v}^{\times} x
$$

with Haar measure $\mathrm{d}_{v}^{\times} x$ normalized with $\mu\left(\mathbb{I}_{K} / K^{\times}\right)=1$.
For $f=\prod_{v} f_{v}$ a monomial Schwartz function

$$
\begin{aligned}
Z_{f}(s) & =\int_{\mathbb{I}_{K}}|x|^{s} \chi(x) f(x) \mathrm{d}^{\times} x \\
& =\prod_{v} \int_{K_{v}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) \mathrm{d}_{v}^{\times} x=\prod_{v} Z_{f_{v}}(s) \quad \Re(s)>1
\end{aligned}
$$

Zeta Integrals: Functional Equation

We now analyze the global zeta integral $Z_{f}(\chi, s)$ in order to establish the analytic continuation and functional equation. For $x \in \mathbb{I}_{K}$ and $f \in \mathcal{S}\left(\mathbb{A}_{K}\right)$ let $\theta_{f}^{\times}(x)=\theta_{f}(x)-f(0)$.

$$
\begin{aligned}
Z_{f}(\chi, s) & =\int_{\mathbb{I}_{K}}|x|^{s} \chi(x) f(x) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{K} / K^{\times}} \sum_{\alpha \in K^{\times}}|\alpha x|^{s} \chi(\alpha x) f(\alpha x) \mathrm{d}^{\times}(\alpha x) \\
& =\int_{\mathbb{I}_{K} / K^{\times}}|x|^{s} \chi(x) \sum_{\alpha \in K^{\times}} f(\alpha x) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{K} / K^{\times}}|x|^{s} \chi(x) \theta_{f}^{\times}(x) \mathrm{d}^{\times} x \\
& =\int_{\mathbb{I}_{K} / K^{\times}}|x|^{s} \chi(x) \theta_{f}^{\times}(x) \mathrm{d}^{\times} x+\int_{\mathbb{I}_{K}^{-} / K^{\times}}|x|^{s} \chi(x) \theta_{f}^{\times}(x) \mathrm{d}^{\times} x
\end{aligned}
$$

The integral over $\mathbb{I}_{K}^{+} / K^{\times}$is entire. For the integral over $\mathbb{I}_{K}^{-} / K^{\times}$we use the functional equation for the global theta function.

Zeta Integrals: Functional Equation

$$
\begin{aligned}
& \int_{\mathbb{I}_{\mathbb{K}}^{-} / K^{\times}}|x|^{s} \chi(x) \theta_{f}^{\times}(x) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{\mathcal{K}} / K^{\times}}\left|\frac{1}{x}\right|^{s} \chi\left(\frac{1}{x}\right) \theta_{f}^{\times}\left(\frac{1}{x}\right) \mathrm{d}^{\times}\left(\frac{1}{x}\right) \\
& =\int_{\mathbb{I}_{\mathcal{K}}^{+} / K^{\times}}|x|^{-s} \chi^{-1}(x)\left(|x| \theta_{\widehat{f}}(x)-f(0)\right) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{1-s} \chi^{-1}(x) \theta_{\widehat{f}}^{\times} \mathrm{d}^{\times} x \\
& +\widehat{f}(0) \int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{s} \chi(x) \mathrm{d}^{\times} x-f(0) \int_{\mathbb{I}_{\frac{K}{K}} / K^{\times}}|x|^{1-s} \chi^{-1}(x) \mathrm{d}^{\times} x
\end{aligned}
$$

The last terms being pole terms.

Zeta Integrals: Functional Equation

$$
\begin{aligned}
& \int_{\mathbb{I}_{K}^{-} / K^{\times}}|x|^{s} \chi(x) \theta_{f}^{\times}(x) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{\mathcal{K}} / K^{\times}}\left|\frac{1}{x}\right|^{s} \chi\left(\frac{1}{x}\right) \theta_{f}^{\times}\left(\frac{1}{x}\right) \mathrm{d}^{\times}\left(\frac{1}{x}\right) \\
& =\int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{-s} \chi^{-1}(x)\left(|x| \theta_{\widehat{f}}(x)-f(0)\right) \mathrm{d}^{\times} x=\int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{1-s} \chi^{-1}(x) \theta_{\widehat{f}}^{\times} \mathrm{d}^{\times} x \\
& +\widehat{f}(0) \int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{s} \chi(x) \mathrm{d}^{\times} x-f(0) \int_{\mathbb{I}_{k} / K^{\times}}|x|^{1-s} \chi^{-1}(x) \mathrm{d}^{\times} x
\end{aligned}
$$

The last terms being pole terms. The integral over $\mathbb{I}_{K}^{+} / K^{\times}$is entire. Since $\mu\left(\mathbb{I}_{K}^{1} / K^{\times}\right)=1$ we can evaluate:
$\widehat{f}(0) \int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{s} \chi(x) \mathrm{d}^{\times} x=\widehat{f}(0) \mu\left(\mathbb{I}_{K}^{1} / K^{\times}\right) \int_{1}^{\infty} x^{1-s} \frac{\mathrm{~d} x}{x}=\kappa K \frac{\widehat{f}(0)}{s-1}$
$f(0) \int_{\mathbb{I}_{K}^{+} / K^{\times}}|x|^{1-s} \chi^{-1}(x) \mathrm{d}^{\times} x=f(0) \mu\left(\mathbb{I}_{K}^{1} / K^{\times}\right) \int_{1}^{\infty} x^{-s} \frac{\mathrm{~d} x}{x}=\kappa_{K} \frac{f(0)}{s}$

Zeta Integrals: Functional Equation

Putting it all together, we obtain
$Z_{f}(\chi, s)=\int_{\mathbb{I}_{K} / \kappa^{\times}}\left(|x|^{s} \chi(x) \theta_{f}^{\times}(x)+|x|^{1-s} \chi^{-1}(x) \theta_{\hat{f}}^{\times}(x)\right) \mathrm{d}^{\times} x+\kappa \kappa \frac{\widehat{f}(0)}{s-1}-\kappa_{K} \frac{f(0)}{s}$
The integral over $\mathbb{I}_{K}^{+} / K^{\times}$is entire, hence we have proved analytic continuation of $Z_{f}(\chi, s)$.
The above expression is symmetric in $s \mapsto 1-s, f \mapsto \widehat{f}$, and $\chi \mapsto \chi^{-1}$ so we obtain the functional equation

$$
Z_{f}(\chi, s)=Z_{\widehat{f}}\left(\chi^{-1}, 1-s\right)
$$

hence we have proved the functional equation of $Z_{f}(\chi, s)$.

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of \mathbb{Q} take $f_{\infty}(x)=e^{-\pi x^{2}}$ the Gaussian function. Then $\widehat{f}_{\infty}=f_{\infty}$ and we have

$$
Z_{f_{\infty}}(s)=\int_{\mathbb{R}^{x}}|x|_{\infty}^{s} f_{\infty}(x) \mathrm{d}_{\infty}^{\times} x=\int_{\mathbb{R}}|x|_{\infty}^{s-1} f_{\infty}(x) \mathrm{d}_{\infty} x=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)
$$

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of \mathbb{Q} take $f_{\infty}(x)=e^{-\pi x^{2}}$ the Gaussian function. Then $\widehat{f}_{\infty}=f_{\infty}$ and we have

$$
Z_{f_{\infty}}(s)=\int_{\mathbb{R}^{x}}|x|_{\infty}^{s} f_{\infty}(x) \mathrm{d}_{\infty}^{\times} x=\int_{\mathbb{R}}|x|_{\infty}^{s-1} f_{\infty}(x) \mathrm{d}_{\infty} x=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)
$$

For $v=p$ a finite place of \mathbb{Q} take $f_{p}(x)=\chi_{\mathbb{Z}_{p}}$ the \mathbf{p}-adic
Gaussian function. Then $\widehat{f}_{p}=f_{p}$ and we have

$$
Z_{f_{p}}(s)=\left.\int_{\mathbb{Q}_{\rho}^{\times}}|x|\right|_{p} ^{s} f_{p}(x) \mathrm{d}_{\rho}^{\times} x=\int_{\mathbb{Z}_{\rho}}|x|_{\rho}^{s} \mathrm{~d}_{\rho}^{\times} x=\frac{1}{1-p^{-s}}
$$

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of \mathbb{Q} take $f_{\infty}(x)=e^{-\pi x^{2}}$ the Gaussian function. Then $\widehat{f}_{\infty}=f_{\infty}$ and we have

$$
Z_{f_{\infty}}(s)=\int_{\mathbb{R}^{x}}|x|_{\infty}^{s} f_{\infty}(x) \mathrm{d}_{\infty}^{\times} x=\int_{\mathbb{R}}|x|_{\infty}^{s-1} f_{\infty}(x) \mathrm{d}_{\infty} x=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)
$$

For $v=p$ a finite place of \mathbb{Q} take $f_{p}(x)=\chi_{\mathbb{Z}_{p}}$ the \mathbf{p}-adic
Gaussian function. Then $\widehat{f}_{p}=f_{p}$ and we have

$$
Z_{f_{p}}(s)=\int_{\mathbb{Q}_{p}^{\times}}|x|_{p}^{s} f_{p}(x) \mathrm{d}_{p}^{\times} x=\int_{\mathbb{Z}_{p}}|x|_{p}^{s} \mathrm{~d}_{p}^{\times} x=\frac{1}{1-p^{-s}}
$$

For $f=\prod_{v} f_{v}$ we obtain the completed Riemann zeta function

$$
Z_{f}(s)=\int_{\mathbb{A}_{\mathbb{Q}}^{\times}}|x|^{s} f(x) \mathrm{d}^{\times} x=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \prod_{p} \frac{1}{1-p^{-s}}=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

Dedekind Zeta Function: Local Factors

For v an Archimedean place of K take $f_{v}(x)=e^{-\pi x^{2}}$ the Gaussian function. Then $\widehat{f}_{v}=f_{v}$ and we have

$$
Z_{f_{v}}(s)=\int_{K_{v}^{\times}}|x|_{v}^{s} f_{v}(x) \mathrm{d}_{v}^{\times} x=\int_{K_{v}}|x|_{v}^{s-1} f_{v}(x) \mathrm{d}_{v} x=\Gamma_{K_{v}}(s)
$$

where $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$.

Dedekind Zeta Function: Local Factors

For v an Archimedean place of K take $f_{v}(x)=e^{-\pi x^{2}}$ the Gaussian function. Then $\widehat{f}_{v}=f_{v}$ and we have

$$
Z_{f_{v}}(s)=\int_{K_{v}^{\times}}|x|_{v}^{s} f_{v}(x) \mathrm{d}_{v}^{\times} x=\int_{K_{v}}|x|_{v}^{s-1} f_{v}(x) \mathrm{d}_{v} x=\Gamma_{K_{v}}(s)
$$

where $\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$. For v a finite place of K where K_{v} is unramified over \mathbb{Q}_{v} take $f_{v}(x)=\chi_{\mathcal{O}_{v}}$ the v-adic Gaussian function. Then $\widehat{f}_{v}=f_{v}$ and we have

$$
Z_{f_{v}}(s)=\int_{K_{v}}|x|_{v}^{s} f_{v}(x) \mathrm{d}_{v}^{\times} x=\int_{\mathcal{O}_{v}}|x|_{v}^{s} \mathrm{~d}_{v}^{\times} x=\frac{1}{1-q_{v}^{-s}}
$$

However for v a finite place of K where K_{v} is ramified over \mathbb{Q}_{v} there is no $f_{v} \in \mathcal{S}\left(K_{v}\right)$ with $\widehat{f}_{v}=f_{v}$.

Dedekind Zeta Function: Local Factors

For v a finite place of K where K_{v} is ramified over \mathbb{Q}_{v} take $f_{v}(x)=\chi_{\mathcal{O}_{v}}$ the v-adic Gaussian function. We have

$$
Z_{f_{v}}(s)=\frac{\left[\mathcal{O}_{v}^{\times}: \mathcal{O}_{v}\right]^{-\frac{1}{2}}}{1-q_{v}^{-s}} \quad Z_{\widehat{f}_{v}}(s)=\frac{\left[\mathcal{O}_{v}^{\times}: \mathcal{O}_{v}\right]^{s-\frac{1}{2}}}{1-q_{v}^{-s}}
$$

Now $Z_{f}(s)=\left|\Delta_{K}\right|^{-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)$ and $Z_{\widehat{f}}(s)=\left|\Delta_{K}\right|^{s-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)$.

Dedekind Zeta Function: Local Factors

For v a finite place of K where K_{v} is ramified over \mathbb{Q}_{v} take $f_{v}(x)=\chi_{\mathcal{O}_{v}}$ the v-adic Gaussian function. We have

$$
Z_{f_{v}}(s)=\frac{\left[\mathcal{O}_{v}^{\times}: \mathcal{O}_{v}\right]^{-\frac{1}{2}}}{1-q_{v}^{-s}} \quad Z_{\widehat{f}_{v}}(s)=\frac{\left[\mathcal{O}_{v}^{\times}: \mathcal{O}_{v}\right]^{s-\frac{1}{2}}}{1-q_{v}^{-s}}
$$

Now $Z_{f}(s)=\left|\Delta_{K}\right|^{-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)$ and $Z_{\widehat{f}}(s)=\left|\Delta_{K}\right|^{s-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)$. Since $Z_{f}(s)=Z_{\widehat{f}}(1-s)$
$\left|\Delta_{K}\right|^{-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)=\left|\Delta_{K}\right|^{(1-s)-\frac{1}{2}} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)$
Dividing by $\left|\Delta_{K}\right|^{-\frac{s+1}{2}}$ we obtain the functional equation

$$
\left|\Delta_{K}\right|^{-\frac{s}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s)=\left|\Delta_{K}\right|^{-\frac{1-s}{2}} \Gamma_{\mathbb{R}}(1-s)^{r_{1}} \Gamma_{\mathbb{C}}(1-s)^{r_{2}} \zeta_{K}(1-s)
$$

