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Let Mr(s) = 7721 (3).

Theorem

The completed zeta function Z(s) = 'r(s)((s) admits an analytic
continuation with a simple pole at s = 1 with residue 1, and
satisfies the functional equation

TTIN(3)C(s) = 7 7 T(A52)¢(1 — s)
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Let K be a number field with r; and r» real and complex places
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Motivation: Dedekind Zeta Function

Let K be a number field with r; and r» real and complex places
and discriminant Ak. Consider the Dedekind zeta function

1
— R(s) >1
n; NmK/Q Nmy g (n)* pl_o[,( 1 — Nmy /q(p)~*
|dea| prime

Let Mr(s) = ﬂfgl'(%) and 'c(s) = 2(27) I (s).

Theorem

The completed zeta function Zx(s) = |Ax | 2Tr(s)" Tc(s)?Ck(s)
admits an analytic continuation with a simple pole at s = 1 with

residue ki given by the class number formula, and satisfies the
functional equation

[Ak| 5 TR (5)" e (s)Cr(s) = |Ak| T Z T(1 = 5)*Tc(1 - 5)*Ck (1~ 5)
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the Dirichlet L-function
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Motivation: Dirichlet L-Functions

Let x : Z — C be a Dirichlet character with modulus N. Consider
the Dirichlet L-function

x(n) 1
Ux,s) = = I ————— R(s)>1
bos) o= pl;IZ 1—x(p)p~* =)
ideal prime

Let rR(X,S) = 71'7%[_(%) for x(—1) =1 (even) and
r]R(Xvs) 2 r( 1
Theorem

The completed L-function L(x,s) = N%FR(X,S)E(X, s) admits an

analytic continuation with a simple pole at s = 1 with residue

“”(,\’,V) when x is principal, and satisfies the functional equation

s 1—s
NEFR(X’ S)K(S, X) = 5(X)NTFR(X7 1- S)E(X_la 1- S)

with [e(x)] =1, e(x)e(x ") = 1.



Adeles

Let K be a number field with ring of integers Ok. For v a place of
K let K, be the completion of K at v with valuation ring O,,. Let
Ak be the adele ring of K:

Ak = HOVKV « I] K
vioo v|oo

Consisting of (x,), € [[, Ky such that x, € O, for all but finitely
many finite places v of K.



Adeles

Let K be a number field with ring of integers Ok. For v a place of
K let K, be the completion of K at v with valuation ring O,,. Let
Ak be the adele ring of K:

Ag = HOVKV « I] K
vioo v|oo

Consisting of (x,), € [[, Ky such that x, € O, for all but finitely
many finite places v of K. Let Ix = Ay be the idele group of K:

]IK:HOVKVX < I k&
vioo v]co

Consisting of (x,), € [[, K© such that x, € O for all but finitely
many finite places v of K.
We have diagonal embeddings K C Ak and K* C Ik.



Adeles

The local fields K, with the usual topology are locally compact
Abelian groups which are Pontryagin self-dual in the sense that
K, = Hom(K,,U(1)) = K,.



Adeles

The local fields K, with the usual topology are locally compact
Abelian groups which are Pontryagin self-dual in the sense that
K, = Hom(K,,U(1)) = K,. Consider the restricted product
topology on the adele ring Ak generated by restricted open
rectangles

U:HvaHOV

ves vgS

for S a finite subset of the set of places of K, with U, C K, open.
Then Ak is a locally compact Abelian group which is Pontryagin
self-dual in the sense that Ax = Hom(Ag, U(1)) = Ak.



Adeles

Let If = {x € Ix | |x| > 1}, I, = {x € Ix | |x| < 1} and

I =L NI = {x€lx||x| =1}

The quotient I} /K> is compact (Fujisaki's compactness lemma),
which implies finiteness of class number for K and Dirichlet’s unit

theorem for Ok.



Adeles

Let If = {x € Ix | |x| > 1}, I, = {x € Ix | |x| < 1} and

I =L NI = {x€lx||x| =1}

The quotient I} /K> is compact (Fujisaki's compactness lemma),
which implies finiteness of class number for K and Dirichlet’s unit
theorem for Ok.

Theorem
Let d*x be a Haar measure on Ik normalized with pu(Ix/K*) = 1.
Then the volume (I} /K*) is given by the class number formula

. 21 (27T)r2 hKRK

u(lk/K*) = ki
|A k[ wik

where hk is the class number of K, where Rk is the Borel
regulator of K, where wy is the number of roots of unity in K.



Schwartz Functions

Definition

For v an Archimedean place of K let S(K,) denote the space of
Schwartz functions on K,: the C-vector space of smooth
functions 7 : K, — C such that (" : K, — C has rapid decay for

all n > 0.
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Bruhat-Schwartz functions on K,: the C-vector space of
compactly supported locally constant functions f : K, — C.



Schwartz Functions

Definition

For v an Archimedean place of K let S(K,) denote the space of
Schwartz functions on K,: the C-vector space of smooth
functions 7 : K, — C such that (" : K, — C has rapid decay for
all n> 0.

Definition

For v a finite place of K let S(K,) denote the space of
Bruhat-Schwartz functions on K,: the C-vector space of
compactly supported locally constant functions f : K, — C.

Definition

Let S(Ak) denote the space of Bruhat-Schwarz functions on
Ak: the C-vector space of finite C-linear combinations of
monomial Bruhat-Schwartz functions f : Ax — C, namely
f=1[,f for f, € S(K,) with f, = xo, for all but finitely many
finite places v of K.



Global Fourier Transform

Let x : Ax — C* be a nontrivial character trivial on the diagonal
K C Ak, yielding a nontrivial character y : Ax/K — C*.

Definition
For f € S(Ak) define the global Fourier transform

()= [ w0t (0= [ K (e

with Haar measure dx and d¢ normalized with p(Ax/K) = 1.



Global Fourier Transform

Let x : Ax — C* be a nontrivial character trivial on the diagonal
K C Ak, yielding a nontrivial character y : Ax/K — C*.

Definition
For f € S(Ak) define the global Fourier transform

()= [ w0t (0= [ K (e

with Haar measure dx and d¢ normalized with p(Ax/K) = 1.

Theorem
(Global Poisson Summation) For f € S(Ak) we have

PRISEDIIG)

xeK ek




Global Theta Functions

For f € S(Ak) consider the global theta function

Or(x) = > f(ax)

aeK

With change of measure (%) = 2-dXa hence d*(2) = L,d*a

IxIv X
| xa)ftana = [ x(e@)raya = AE)
Ak A

x| Jax x|



Global Theta Functions

For f € S(Ak) consider the global theta function

= Z f(ax)

aeK

With change of measure df($) = |)3|Vd§oz hence d*($) = L%

T

1 1~

/ X(Ea)f(ax)da = — [ X(E)F(a)da = —F(£)
Ax x| Ja, |x|

We obtain the functional equation for the global theta function

Zfax HZI‘ ]x\ )

aceK




Global Zeta Integrals

Let x : [k — C* be a character trivial on the diagonal K* C I,
yielding a Hecke character y : Ix/K* — C*. Suppose moreover
that y is trivial on the diagonal R~ in Archimedean places in k.



Global Zeta Integrals

Let x : [k — C* be a character trivial on the diagonal K* C I,
yielding a Hecke character y : Ix/K* — C*. Suppose moreover
that y is trivial on the diagonal R~ in Archimedean places in k.

Definition
For f € S(Ak) define the global zeta integral
Zi069) = [ RO () > 1
Ik

with Haar measure d*x normalized with p(Ix/K*) = 1.



Global Zeta Integrals

Definition
For v a place of K and f, € S(K,) define the local zeta integral

Z:.(xvs5) = / XI5 (), ()2 x
KX

with Haar measure d ¥ x normalized with p(Ix/K*) = 1.



Global Zeta Integrals

Definition
For v a place of K and f, € S(K,) define the local zeta integral

Zus) = [ XG0 ()

\4

with Haar measure d ¥ x normalized with p(Ix/K*) = 1.

For f =[], f» a monomial Schwartz function
Zi(s) = / XX () F ()" x
Ik
“TI / X (R ()dx = [[Ze(s)  R(s) > 1
v KVX v



Zeta Integrals: Functional Equation

We now analyze the global zeta integral Z¢(,s) in order to
establish the analytic continuation and functional equation.
For x € Ik and f € S(Ak) let 67 (x) = 6¢(x) — £(0).

/ XX () F () x = / S Jax|x(@x)f(ax)d* (ax)
]IK/K acKXx
:/ X)) S f(ax) / XS x ()87 (x)d*x
I /K R /K

- / XX ()0 ()" x + / XX ()8 ()" x
I[;/KX I[K/K><

The integral over I} « /K> is entire. For the integral over I, /K™ we
use the functional equation for the global theta function.



Zeta Integrals: Functional Equation

[ s eoax= [ et
I /KX K
- /HW el =532 06) (118 0x) — £(0)) 4%x = /HW

1 7(0) / xS x(x)d"x — £(0) / x5y () x
]1;/KX H;/KX

The last terms being pole terms.

|x|1_sx_1(x)0;dxx



Zeta Integrals: Functional Equation

e PG [P0 ()
I /K> p
= /H;/KX X7 x 7 (x )(|X|9f(X) - f(O))dXx:/ |X|1_SX_1(X)0;dXx

Ik /K>

1 7(0) / xS x(x)d"x — £(0) / x5y () x
If /K> If/Kx

The last terms being pole terms. The integral over ]I:Q/KX is
entire. Since u(I} /K*) =1 we can evaluate:

~

7 s X _ F 1 X Ooxl—sdl — k f(O)
) [ WP = FOmak /) | p

X s—1

1-s, -1 Xy 1 X OOX—sdl:K @
0) [ 0= PO /) [ = e

S




Zeta Integrals: Functional Equation

Putting it all together, we obtain

s—1 s

Zic9) = [ (08700 + I 98700 )+ e 10 = T

The integral over H:Q/KX is entire, hence we have proved analytic
continuation of Z¢(x, s).

The above expression is symmetricin s+—1—s, f — ? and

X — X~ ! so we obtain the functional equation

Ze(x,s) = Zz(x 1, 1—s)

hence we have proved the functional equation of Z(y,s).



Riemann Zeta Function: Local Factors

For v = 0o an Archimedean place of Q take fw(x) = e ™ the
Gaussian function. Then f, = f, and we have

Ze(5) = | Eeeldzx = [ M i (dx = 7 ET(S)
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Riemann Zeta Function: Local Factors

For v = 0o an Archimedean place of Q take fw(x) = e ™ the
Gaussian function. Then f, = f, and we have

Ze(5) = | Eeeldzx = [ M i (dx = 7 ET(S)

For v = p a finite place of Q take f,(x) = xz, the p-adic
Gaussian function. Then ﬁ, = f, and we have

1
e Ny s

p p

For f =[], f, we obtain the completed Riemann zeta function

Nl
—
—~
Nl
P

=

21\

N
—
—~~
Nln
~—
A
—~~

n

~—

Z¢(s) :/A Ix|*f(x)d*x = 72

X
Q P



Dedekind Zeta Function: Local Factors

For v an Archimedean place of K take f,(x) = e ™ the
Gaussian function. Then f, = f, and we have

Za(s) = [ IERGOGx = [ b RGO x = T (9)

where ['r(s) = 7731(5) and T¢(s) = 2(27)~*I(s).



Dedekind Zeta Function: Local Factors

For v an Archimedean place of K take f,(x) = e ™ the
Gaussian function. Then f, = f, and we have

Za(s) = [ IERGOGx = [ b RGO x = T (9)

where g(s) = wfgr(%) and I'c(s) = 2(27)~°I(s). For v a finite
place of K where K, is unramified over Q, take f,(x) = xo, the
v-adic Gaussian function. Then f, = f, and we have

1
/ |x|5 £y dXx—/ Ix[7dyx = —
O, 1—gq,

However for v a finite place Qf K where K, is ramified over Q,
there is no f, € S(K,) with f, = f,.




Dedekind Zeta Function: Local Factors

For v a finite place of K where K, is ramified over QQ, take
f,(x) = xo, the v-adic Gaussian function. We have

Zi(s) = O020d2 ) [OF 007

1-gq,° v 1-gq,°

Now Z(s) = \AlK\_%I'R(s)’lF@(S)QCK(S) and
Zx(s) = |Ax[|*"2Tr(s)"Tc(s)?Ck(s)



Dedekind Zeta Function: Local Factors

For v a finite place of K where K, is ramified over QQ, take
f,(x) = xo, the v-adic Gaussian function. We have

[or:0)
-l

[0r 0]

V4
() ——

Z;z (s)

Now Z(s) = \AlK\_%I'R(s)’lF@(S)QCK(S) and
Z:(s) = |Ak[* 2TRr(s)"*Tc(s)?Ck(s). Since Z¢(s) = Zz(1 —s)

|Ak|2Ta(s) Te(s)2Ck(s) = | k|39 72 MR(1 — 5)Te(l — 5)2(k (1 — )
Dividing by |AK|_%1 we obtain the functional equation

[Ak| 2R (5) Te(s)Cr(s) = |Ak| T Z Ta(1 = 5)*Tc(1 — 5)*Ck (1~ 5)



