Tate's Thesis: *L*-Functions and Harmonic Analysis on the Adeles

Aleksander Shmakov

University of Georgia

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$\zeta(s) = \sum_{\substack{n \subseteq \mathbb{Z} \\ \mathsf{ideal}}} \frac{1}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \\ \mathsf{prime}}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$
.

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$\zeta(s) = \sum_{\substack{n \subseteq \mathbb{Z} \ \mathsf{ideal}}} rac{1}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \ \mathsf{prime}}} rac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$
.

Theorem

The completed zeta function $Z(s) = \Gamma_{\mathbb{R}}(s)\zeta(s)$ admits an **analytic continuation** with a simple pole at s=1 with residue 1, and satisfies the **functional equation**

$$\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma(\frac{1-s}{2})\zeta(1-s)$$

Motivation: Dedekind Zeta Function

Let K be a number field with r_1 and r_2 real and complex places and discriminant Δ_K . Consider the Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{\substack{\mathfrak{n} \subseteq \mathcal{O}_{\mathcal{K}} \\ \mathsf{ideal}}} \frac{1}{\mathrm{Nm}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{n})^{s}} = \prod_{\substack{\mathfrak{p} \subseteq \mathcal{O}_{\mathcal{K}} \\ \mathsf{prime}}} \frac{1}{1 - \mathrm{Nm}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p})^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$
 and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$.

Motivation: Dedekind Zeta Function

Let K be a number field with r_1 and r_2 real and complex places and discriminant Δ_K . Consider the Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) = \sum_{\substack{\mathfrak{n} \subseteq \mathcal{O}_{\mathcal{K}} \ \mathsf{ideal}}} rac{1}{\mathrm{Nm}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{n})^s} = \prod_{\substack{\mathfrak{p} \subseteq \mathcal{O}_{\mathcal{K}} \ \mathsf{prime}}} rac{1}{1 - \mathrm{Nm}_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p})^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$
 and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s} \Gamma(s)$.

Theorem

The completed zeta function $Z_K(s)=|\Delta_K|^{-\frac{s}{2}}\Gamma_\mathbb{R}(s)^{r_1}\Gamma_\mathbb{C}(s)^{r_2}\zeta_K(s)$ admits an **analytic continuation** with a simple pole at s=1 with residue κ_K given by the class number formula, and satisfies the **functional equation**

$$|\Delta_{\mathcal{K}}|^{-\frac{s}{2}}\Gamma_{\mathbb{R}}(s)^{r_1}\Gamma_{\mathbb{C}}(s)^{r_2}\zeta_{\mathcal{K}}(s) = |\Delta_{\mathcal{K}}|^{-\frac{1-s}{2}}\Gamma_{\mathbb{R}}(1-s)^{r_1}\Gamma_{\mathbb{C}}(1-s)^{r_2}\zeta_{\mathcal{K}}(1-s)$$

Motivation: Dirichlet L-Functions

Let $\chi:\mathbb{Z}\to\mathbb{C}$ be a Dirichlet character with modulus N. Consider the Dirichlet L-function

$$\ell(\chi,s) = \sum_{\substack{n \subseteq \mathbb{Z} \\ \mathsf{ideal}}} \frac{\chi(n)}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \\ \mathsf{prime}}} \frac{1}{1 - \chi(p)p^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(\chi,s)=\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$$
 for $\chi(-1)=1$ (even) and $\Gamma_{\mathbb{R}}(\chi,s)=\pi^{-\frac{s+1}{2}}\Gamma(\frac{s+1}{2})$ for $\chi(-1)=-1$ (odd).

Motivation: Dirichlet L-Functions

Let $\chi: \mathbb{Z} \to \mathbb{C}$ be a Dirichlet character with modulus N. Consider the Dirichlet L-function

$$\ell(\chi,s) = \sum_{\substack{n \subseteq \mathbb{Z} \\ \mathsf{ideal}}} \frac{\chi(n)}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \\ \mathsf{prime}}} \frac{1}{1 - \chi(p)p^{-s}} \qquad \Re(s) > 1$$

Let
$$\Gamma_{\mathbb{R}}(\chi,s)=\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$$
 for $\chi(-1)=1$ (even) and $\Gamma_{\mathbb{R}}(\chi,s)=\pi^{-\frac{s+1}{2}}\Gamma(\frac{s+1}{2})$ for $\chi(-1)=-1$ (odd).

Theorem

The completed L-function $L(\chi,s)=N^{\frac{s}{2}}\Gamma_{\mathbb{R}}(\chi,s)\ell(\chi,s)$ admits an analytic continuation with a simple pole at s=1 with residue $\frac{\varphi(N)}{N}$ when χ is principal, and satisfies the functional equation

$$N^{\frac{s}{2}}\Gamma_{\mathbb{R}}(\chi,s)\ell(s,\chi)=\varepsilon(\chi)N^{\frac{1-s}{2}}\Gamma_{\mathbb{R}}(\chi,1-s)\ell(\chi^{-1},1-s)$$

with
$$|\varepsilon(\chi)| = 1$$
, $\varepsilon(\chi)\varepsilon(\chi^{-1}) = 1$.

Let K be a number field with ring of integers \mathcal{O}_K . For v a place of K let K_v be the completion of K at v with valuation ring \mathcal{O}_v . Let \mathbb{A}_K be the adele ring of K:

$$\mathbb{A}_{\mathcal{K}} = \hat{\prod_{\nu \nmid \infty}}^{\mathcal{O}_{\nu}} \mathcal{K}_{\nu} \times \prod_{\nu \mid \infty} \mathcal{K}_{\nu}$$

Consisting of $(x_v)_v \in \prod_v K_v$ such that $x_v \in \mathcal{O}_v$ for all but finitely many finite places v of K.

Let K be a number field with ring of integers \mathcal{O}_K . For v a place of K let K_v be the completion of K at v with valuation ring \mathcal{O}_v . Let \mathbb{A}_K be the adele ring of K:

$$\mathbb{A}_{\mathcal{K}} = \hat{\prod}_{\nu \nmid \infty}^{\mathcal{O}_{\nu}} \mathcal{K}_{\nu} \times \prod_{\nu \mid \infty} \mathcal{K}_{\nu}$$

Consisting of $(x_v)_v \in \prod_v K_v$ such that $x_v \in \mathcal{O}_v$ for all but finitely many finite places v of K. Let $\mathbb{I}_K = \mathbb{A}_K^{\times}$ be the idele group of K:

$$\mathbb{I}_{\mathcal{K}} = \hat{\prod}_{\nu \nmid \infty}^{\mathcal{O}_{\nu}^{\times}} \mathcal{K}_{\nu}^{\times} \times \prod_{\nu \mid \infty} \mathcal{K}_{\nu}^{\times}$$

Consisting of $(x_v)_v \in \prod_v K_v^{\times}$ such that $x_v \in \mathcal{O}_v^{\times}$ for all but finitely many finite places v of K.

We have **diagonal embeddings** $K \subseteq \mathbb{A}_K$ and $K^{\times} \subseteq \mathbb{I}_K$.

The local fields K_{ν} with the usual topology are locally compact Abelian groups which are **Pontryagin self-dual** in the sense that $\widehat{K}_{\nu} = \operatorname{Hom}(K_{\nu}, \mathrm{U}(1)) = K_{\nu}$.

The local fields K_{ν} with the usual topology are locally compact Abelian groups which are **Pontryagin self-dual** in the sense that $\widehat{K}_{\nu} = \operatorname{Hom}(K_{\nu}, \mathrm{U}(1)) = K_{\nu}$. Consider the restricted product topology on the adele ring \mathbb{A}_{K} generated by restricted open rectangles

$$U = \prod_{v \in S} U_v \times \prod_{v \notin S} \mathcal{O}_v$$

for S a finite subset of the set of places of K, with $U_{\nu} \subseteq K_{\nu}$ open. Then \mathbb{A}_{K} is a locally compact Abelian group which is **Pontryagin self-dual** in the sense that $\widehat{\mathbb{A}}_{K} = \operatorname{Hom}(\mathbb{A}_{K}, \mathrm{U}(1)) = \mathbb{A}_{K}$.

Let $\mathbb{I}_K^+ = \{x \in \mathbb{I}_K \mid |x| \geq 1\}$, $\mathbb{I}_K^- = \{x \in \mathbb{I}_K \mid |x| \leq 1\}$ and $\mathbb{I}_K^1 = \mathbb{I}_K^+ \cap \mathbb{I}_K^- = \{x \in \mathbb{I}_K \mid |x| = 1\}$. The quotient \mathbb{I}_K^1/K^\times is **compact** (Fujisaki's compactness lemma), which implies finiteness of class number for K and Dirichlet's unit theorem for \mathcal{O}_K .

Let $\mathbb{I}_K^+ = \{x \in \mathbb{I}_K \mid |x| \geq 1\}$, $\mathbb{I}_K^- = \{x \in \mathbb{I}_K \mid |x| \leq 1\}$ and $\mathbb{I}_K^1 = \mathbb{I}_K^+ \cap \mathbb{I}_K^- = \{x \in \mathbb{I}_K \mid |x| = 1\}$.

The quotient $\mathbb{I}_K^1/K^{\times}$ is **compact** (Fujisaki's compactness lemma), which implies finiteness of class number for K and Dirichlet's unit theorem for \mathcal{O}_K .

Theorem

Let $d^{\times}x$ be a Haar measure on \mathbb{I}_{K} normalized with $\mu(\mathbb{I}_{K}/K^{\times})=1$. Then the volume $\mu(\mathbb{I}_{K}^{1}/K^{\times})$ is given by the class number formula

$$\mu(\mathbb{I}_K^1/K^\times) = \kappa_K = \frac{2^{r_1}(2\pi)^{r_2}h_KR_K}{\sqrt{|\Delta_K|}w_K}$$

where h_K is the class number of K, where R_K is the Borel regulator of K, where w_K is the number of roots of unity in K.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}(K_v)$ denote the space of **Schwartz functions** on K_v : the \mathbb{C} -vector space of smooth functions $f:K_v\to\mathbb{C}$ such that $f^{(n)}:K_v\to\mathbb{C}$ has rapid decay for all $n\geq 0$.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}(K_v)$ denote the space of **Schwartz functions** on K_v : the \mathbb{C} -vector space of smooth functions $f:K_v\to\mathbb{C}$ such that $f^{(n)}:K_v\to\mathbb{C}$ has rapid decay for all $n\geq 0$.

Definition

For v a finite place of K let $S(K_v)$ denote the space of **Bruhat-Schwartz functions** on K_v : the \mathbb{C} -vector space of compactly supported locally constant functions $f: K_v \to \mathbb{C}$.

Schwartz Functions

Definition

For v an Archimedean place of K let $\mathcal{S}(K_v)$ denote the space of **Schwartz functions** on K_v : the \mathbb{C} -vector space of smooth functions $f:K_v\to\mathbb{C}$ such that $f^{(n)}:K_v\to\mathbb{C}$ has rapid decay for all $n\geq 0$.

Definition

For v a finite place of K let $S(K_v)$ denote the space of **Bruhat-Schwartz functions** on K_v : the \mathbb{C} -vector space of compactly supported locally constant functions $f: K_v \to \mathbb{C}$.

Definition

Let $\mathcal{S}(\mathbb{A}_K)$ denote the space of **Bruhat-Schwarz functions** on \mathbb{A}_K : the \mathbb{C} -vector space of finite \mathbb{C} -linear combinations of **monomial Bruhat-Schwartz functions** $f: \mathbb{A}_K \to \mathbb{C}$, namely $f = \prod_{\nu} f_{\nu}$ for $f_{\nu} \in \mathcal{S}(K_{\nu})$ with $f_{\nu} = \chi_{\mathcal{O}_{\nu}}$ for all but finitely many finite places ν of K.

Global Fourier Transform

Let $\chi: \mathbb{A}_K \to \mathbb{C}^{\times}$ be a nontrivial character trivial on the diagonal $K \subseteq \mathbb{A}_K$, yielding a nontrivial character $\chi: \mathbb{A}_K/K \to \mathbb{C}^{\times}$.

Definition

For $f \in \mathcal{S}(\mathbb{A}_K)$ define the **global Fourier transform**

$$\widehat{f}(\xi) = \int_{\mathbb{A}_K} \overline{\chi}(\xi x) f(x) dx \qquad \left(f(x) = \int_{\mathbb{A}_K} \chi(\xi x) \widehat{f}(\xi) d\xi \right)$$

with Haar measure $\mathrm{d}x$ and $\mathrm{d}\xi$ normalized with $\mu(\mathbb{A}_K/K)=1$.

Global Fourier Transform

Let $\chi: \mathbb{A}_K \to \mathbb{C}^{\times}$ be a nontrivial character trivial on the diagonal $K \subseteq \mathbb{A}_K$, yielding a nontrivial character $\chi: \mathbb{A}_K/K \to \mathbb{C}^{\times}$.

Definition

For $f \in \mathcal{S}(\mathbb{A}_K)$ define the **global Fourier transform**

$$\widehat{f}(\xi) = \int_{\mathbb{A}_K} \overline{\chi}(\xi x) f(x) dx \qquad \left(f(x) = \int_{\mathbb{A}_K} \chi(\xi x) \widehat{f}(\xi) d\xi \right)$$

with Haar measure dx and $d\xi$ normalized with $\mu(\mathbb{A}_K/K) = 1$.

Theorem

(Global Poisson Summation) For $f \in \mathcal{S}(\mathbb{A}_K)$ we have

$$\sum_{x \in K} f(x) = \sum_{\xi \in K} \widehat{f}(\xi)$$

Global Theta Functions

For $f \in \mathcal{S}(\mathbb{A}_K)$ consider the **global theta function**

$$\theta_f(x) = \sum_{\alpha \in K} f(\alpha x)$$

With change of measure $d_{\mathbf{v}}^{\times}(\frac{\alpha}{x}) = \frac{1}{|x|_{\mathbf{v}}} d_{\mathbf{v}}^{\times} \alpha$ hence $d^{\times}(\frac{\alpha}{x}) = \frac{1}{|x|} d^{\times} \alpha$

$$\int_{\mathbb{A}_K} \overline{\chi}(\xi \alpha) f(\alpha x) \mathrm{d}\alpha = \frac{1}{|x|} \int_{\mathbb{A}_K} \overline{\chi}(\xi \frac{\alpha}{x}) f(\alpha) \mathrm{d}\alpha = \frac{1}{|x|} \widehat{f}(\frac{\xi}{x})$$

Global Theta Functions

For $f \in \mathcal{S}(\mathbb{A}_K)$ consider the **global theta function**

$$\theta_f(x) = \sum_{\alpha \in K} f(\alpha x)$$

With change of measure $d_{\mathbf{v}}^{\times}(\frac{\alpha}{x}) = \frac{1}{|x|_{\mathbf{v}}} d_{\mathbf{v}}^{\times} \alpha$ hence $d^{\times}(\frac{\alpha}{x}) = \frac{1}{|x|} d^{\times} \alpha$

$$\int_{\mathbb{A}_K} \overline{\chi}(\xi \alpha) f(\alpha x) d\alpha = \frac{1}{|x|} \int_{\mathbb{A}_K} \overline{\chi}(\xi \frac{\alpha}{x}) f(\alpha) d\alpha = \frac{1}{|x|} \widehat{f}(\frac{\xi}{x})$$

We obtain the functional equation for the global theta function

$$\theta_f(x) = \sum_{\alpha \in K} f(\alpha x) = \frac{1}{|x|} \sum_{\alpha \in K} \widehat{f}(\frac{\alpha}{x}) = \frac{1}{|x|} \theta_{\widehat{f}}(\frac{1}{x})$$

Let $\chi: \mathbb{I}_K \to \mathbb{C}^{\times}$ be a character trivial on the diagonal $K^{\times} \subseteq \mathbb{I}_K$, yielding a Hecke character $\chi: \mathbb{I}_K/K^{\times} \to \mathbb{C}^{\times}$. Suppose moreover that χ is trivial on the diagonal $\mathbb{R}_{>0}$ in Archimedean places in \mathbb{I}_K .

Let $\chi: \mathbb{I}_K \to \mathbb{C}^{\times}$ be a character trivial on the diagonal $K^{\times} \subseteq \mathbb{I}_K$, yielding a Hecke character $\chi: \mathbb{I}_K/K^{\times} \to \mathbb{C}^{\times}$. Suppose moreover that χ is trivial on the diagonal $\mathbb{R}_{>0}$ in Archimedean places in \mathbb{I}_K .

Definition

For $f \in \mathcal{S}(\mathbb{A}_K)$ define the global zeta integral

$$Z_f(\chi,s) = \int_{\mathbb{I}_K} |x|^s \chi(x) f(x) \mathrm{d}^{\times} x \qquad \Re(s) > 1$$

with Haar measure $d^{\times}x$ normalized with $\mu(\mathbb{I}_{K}/K^{\times})=1$.

Definition

For v a place of K and $f_v \in \mathcal{S}(K_v)$ define the local zeta integral

$$Z_{f_{\nu}}(\chi_{\nu},s) = \int_{\mathcal{K}_{\nu}^{\times}} |x|_{\nu}^{s} \chi_{\nu}(x) f_{\nu}(x) \mathrm{d}_{\nu}^{\times} x$$

with Haar measure $\mathrm{d}_{\mathbf{v}}^{\times}x$ normalized with $\mu(\mathbb{I}_{\mathcal{K}}/\mathcal{K}^{\times})=1.$

Definition

For v a place of K and $f_v \in \mathcal{S}(K_v)$ define the local zeta integral

$$Z_{f_{\nu}}(\chi_{\nu},s) = \int_{\mathcal{K}_{\nu}^{\times}} |x|_{\nu}^{s} \chi_{\nu}(x) f_{\nu}(x) \mathrm{d}_{\nu}^{\times} x$$

with Haar measure $\mathrm{d}_{v}^{\times}x$ normalized with $\mu(\mathbb{I}_{K}/K^{\times})=1.$

For $f = \prod_{v} f_{v}$ a monomial Schwartz function

$$egin{aligned} Z_f(s) &= \int_{\mathbb{I}_K} |x|^s \chi(x) f(x) \mathrm{d}^{ imes} x \ &= \prod_{v} \int_{\mathcal{K}_v^{ imes}} |x|_v^s \chi_v(x) f_v(x) \mathrm{d}_v^{ imes} x = \prod_{v} Z_{f_v}(s) \qquad \Re(s) > 1 \end{aligned}$$

We now analyze the global zeta integral $Z_f(\chi, s)$ in order to establish the **analytic continuation** and **functional equation**. For $x \in \mathbb{I}_K$ and $f \in \mathcal{S}(\mathbb{A}_K)$ let $\theta_{\mathfrak{s}}^{\times}(x) = \theta_f(x) - f(0)$.

$$Z_{f}(\chi, s) = \int_{\mathbb{I}_{K}} |x|^{s} \chi(x) f(x) d^{\times} x = \int_{\mathbb{I}_{K}/K^{\times}} \sum_{\alpha \in K^{\times}} |\alpha x|^{s} \chi(\alpha x) f(\alpha x) d^{\times}(\alpha x)$$

$$= \int_{\mathbb{I}_{K}/K^{\times}} |x|^{s} \chi(x) \sum_{\alpha \in K^{\times}} f(\alpha x) d^{\times} x = \int_{\mathbb{I}_{K}/K^{\times}} |x|^{s} \chi(x) \theta_{f}^{\times}(x) d^{\times} x$$

$$= \int_{\mathbb{I}_{K}^{+}/K^{\times}} |x|^{s} \chi(x) \theta_{f}^{\times}(x) d^{\times} x + \int_{\mathbb{I}_{K}^{-}/K^{\times}} |x|^{s} \chi(x) \theta_{f}^{\times}(x) d^{\times} x$$

The integral over \mathbb{I}_K^+/K^\times is entire. For the integral over \mathbb{I}_K^-/K^\times we use the functional equation for the global theta function.

$$\begin{split} &\int_{\mathbb{I}_{K}^{-}/K^{\times}}|x|^{s}\chi(x)\theta_{f}^{\times}(x)\mathrm{d}^{\times}x = \int_{\mathbb{I}_{K}^{+}/K^{\times}}|\frac{1}{x}|^{s}\chi(\frac{1}{x})\theta_{f}^{\times}(\frac{1}{x})\mathrm{d}^{\times}(\frac{1}{x})\\ &= \int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{-s}\chi^{-1}(x)\Big(|x|\theta_{\widehat{f}}(x) - f(0)\Big)\mathrm{d}^{\times}x = \int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{1-s}\chi^{-1}(x)\theta_{\widehat{f}}^{\times}\mathrm{d}^{\times}x\\ &+ \widehat{f}(0)\int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{s}\chi(x)\mathrm{d}^{\times}x - f(0)\int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{1-s}\chi^{-1}(x)\mathrm{d}^{\times}x \end{split}$$

The last terms being pole terms.

$$\begin{split} &\int_{\mathbb{I}_{K}^{-}/K^{\times}}|x|^{s}\chi(x)\theta_{f}^{\times}(x)\mathrm{d}^{\times}x = \int_{\mathbb{I}_{K}^{+}/K^{\times}}|\frac{1}{x}|^{s}\chi(\frac{1}{x})\theta_{f}^{\times}(\frac{1}{x})\mathrm{d}^{\times}(\frac{1}{x})\\ &= \int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{-s}\chi^{-1}(x)\Big(|x|\theta_{\widehat{f}}(x) - f(0)\Big)\mathrm{d}^{\times}x = \int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{1-s}\chi^{-1}(x)\theta_{\widehat{f}}^{\times}\mathrm{d}^{\times}x\\ &+ \widehat{f}(0)\int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{s}\chi(x)\mathrm{d}^{\times}x - f(0)\int_{\mathbb{I}_{K}^{+}/K^{\times}}|x|^{1-s}\chi^{-1}(x)\mathrm{d}^{\times}x \end{split}$$

The last terms being pole terms. The integral over $\mathbb{I}_K^+/K^{\times}$ is entire. Since $\mu(\mathbb{I}_K^1/K^{\times})=1$ we can evaluate:

$$\widehat{f}(0) \int_{\mathbb{I}_{K}^{+}/K^{\times}} |x|^{s} \chi(x) \mathrm{d}^{\times} x = \widehat{f}(0) \mu(\mathbb{I}_{K}^{1}/K^{\times}) \int_{1}^{\infty} x^{1-s} \frac{\mathrm{d}x}{x} = \kappa_{K} \frac{\widehat{f}(0)}{s-1}$$

$$f(0) \int_{\mathbb{I}_{L}^{+}/K^{\times}} |x|^{1-s} \chi^{-1}(x) \mathrm{d}^{\times} x = f(0) \mu(\mathbb{I}_{K}^{1}/K^{\times}) \int_{1}^{\infty} x^{-s} \frac{\mathrm{d}x}{x} = \kappa_{K} \frac{f(0)}{s}$$

Putting it all together, we obtain

$$Z_f(\chi,s) = \int_{\mathbb{I}_K^+/K^\times} \left(|x|^s \chi(x) \theta_f^\times(x) + |x|^{1-s} \chi^{-1}(x) \theta_{\widehat{f}}^\times(x) \right) d^\times x + \kappa_K \frac{\widehat{f}(0)}{s-1} - \kappa_K \frac{f(0)}{s}$$

The integral over \mathbb{I}_K^+/K^\times is entire, hence we have proved **analytic continuation** of $Z_f(\chi, s)$.

The above expression is symmetric in $s\mapsto 1-s$, $f\mapsto \widehat{f}$, and $\chi\mapsto \chi^{-1}$ so we obtain the functional equation

$$Z_f(\chi,s)=Z_{\widehat{f}}(\chi^{-1},1-s)$$

hence we have proved the **functional equation** of $Z_f(\chi, s)$.

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of $\mathbb Q$ take $f_\infty(x)=e^{-\pi x^2}$ the Gaussian function. Then $\widehat f_\infty=f_\infty$ and we have

$$Z_{f_{\infty}}(s) = \int_{\mathbb{R}^{\times}} |x|_{\infty}^{s} f_{\infty}(x) \mathrm{d}_{\infty}^{\times} x = \int_{\mathbb{R}} |x|_{\infty}^{s-1} f_{\infty}(x) \mathrm{d}_{\infty} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of $\mathbb Q$ take $f_\infty(x)=e^{-\pi x^2}$ the **Gaussian function**. Then $\widehat f_\infty=f_\infty$ and we have

$$Z_{f_{\infty}}(s) = \int_{\mathbb{R}^{\times}} |x|_{\infty}^{s} f_{\infty}(x) \mathrm{d}_{\infty}^{\times} x = \int_{\mathbb{R}} |x|_{\infty}^{s-1} f_{\infty}(x) \mathrm{d}_{\infty} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$

For v=p a finite place of $\mathbb Q$ take $f_p(x)=\chi_{\mathbb Z_p}$ the **p-adic** Gaussian function. Then $\widehat{f_p}=f_p$ and we have

$$Z_{f_p}(s) = \int_{\mathbb{Q}_p^\times} |x|_p^s f_p(x) \mathrm{d}_p^\times x = \int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}_p^\times x = \frac{1}{1 - p^{-s}}$$

Riemann Zeta Function: Local Factors

For $v=\infty$ an Archimedean place of $\mathbb Q$ take $f_\infty(x)=e^{-\pi x^2}$ the Gaussian function. Then $\widehat{f}_\infty=f_\infty$ and we have

$$Z_{f_\infty}(s) = \int_{\mathbb{R}^\times} |x|_\infty^s f_\infty(x) \mathrm{d}_\infty^\times x = \int_{\mathbb{R}} |x|_\infty^{s-1} f_\infty(x) \mathrm{d}_\infty x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$

For v=p a finite place of $\mathbb Q$ take $f_p(x)=\chi_{\mathbb Z_p}$ the **p-adic** Gaussian function. Then $\widehat{f_p}=f_p$ and we have

$$Z_{f_p}(s) = \int_{\mathbb{Q}_p^\times} |x|_p^s f_p(x) \mathrm{d}_p^\times x = \int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}_p^\times x = \frac{1}{1 - p^{-s}}$$

For $f = \prod_{v} f_{v}$ we obtain the completed Riemann zeta function

$$Z_f(s) = \int_{\mathbb{A}_{\mathbb{O}}^{\times}} |x|^s f(x) d^{\times} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \prod_{p} \frac{1}{1 - p^{-s}} = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$$

For v an Archimedean place of K take $f_v(x) = e^{-\pi x^2}$ the **Gaussian function**. Then $\widehat{f_v} = f_v$ and we have

$$Z_{f_{\nu}}(s) = \int_{\mathcal{K}_{\nu}^{\times}} |x|_{\nu}^{s} f_{\nu}(x) \mathrm{d}_{\nu}^{\times} x = \int_{\mathcal{K}_{\nu}} |x|_{\nu}^{s-1} f_{\nu}(x) \mathrm{d}_{\nu} x = \Gamma_{\mathcal{K}_{\nu}}(s)$$

where
$$\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$$
 and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$.

For v an Archimedean place of K take $f_v(x) = e^{-\pi x^2}$ the **Gaussian function**. Then $\widehat{f_v} = f_v$ and we have

$$Z_{f_{\nu}}(s) = \int_{\mathcal{K}_{\nu}^{\times}} |x|_{\nu}^{s} f_{\nu}(x) \mathrm{d}_{\nu}^{\times} x = \int_{\mathcal{K}_{\nu}} |x|_{\nu}^{s-1} f_{\nu}(x) \mathrm{d}_{\nu} x = \Gamma_{\mathcal{K}_{\nu}}(s)$$

where $\Gamma_{\mathbb{R}}(s) = \pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$ and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$. For v a finite place of K where K_v is **unramified** over \mathbb{Q}_v take $f_v(x) = \chi_{\mathcal{O}_v}$ the **v-adic Gaussian function**. Then $\widehat{f_v} = f_v$ and we have

$$Z_{f_{\nu}}(s) = \int_{\mathcal{K}_{\nu}} |x|_{\nu}^{s} f_{\nu}(x) \mathrm{d}_{\nu}^{\times} x = \int_{\mathcal{O}_{\nu}} |x|_{\nu}^{s} \mathrm{d}_{\nu}^{\times} x = \frac{1}{1 - q_{\nu}^{-s}}$$

However for v a finite place of K where K_v is **ramified** over \mathbb{Q}_v there is no $f_v \in \mathcal{S}(K_v)$ with $\widehat{f}_v = f_v$.

For v a finite place of K where K_v is **ramified** over \mathbb{Q}_v take $f_v(x) = \chi_{\mathcal{O}_v}$ the **v-adic Gaussian function**. We have

$$Z_{f_{v}}(s) = rac{[\mathcal{O}_{v}^{ imes}:\mathcal{O}_{v}]^{-rac{1}{2}}}{1-q_{v}^{-s}} \qquad Z_{\widehat{f_{v}}}(s) = rac{[\mathcal{O}_{v}^{ imes}:\mathcal{O}_{v}]^{s-rac{1}{2}}}{1-q_{v}^{-s}}$$

Now
$$Z_f(s) = |\Delta_K|^{-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$$
 and $Z_{\widehat{f}}(s) = |\Delta_K|^{s-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$.

For v a finite place of K where K_v is **ramified** over \mathbb{Q}_v take $f_v(x) = \chi_{\mathcal{O}_v}$ the **v-adic Gaussian function**. We have

$$Z_{f_{v}}(s) = rac{[\mathcal{O}_{v}^{ imes}:\mathcal{O}_{v}]^{-rac{1}{2}}}{1-q_{v}^{-s}} \qquad Z_{\widehat{f_{v}}}(s) = rac{[\mathcal{O}_{v}^{ imes}:\mathcal{O}_{v}]^{s-rac{1}{2}}}{1-q_{v}^{-s}}$$

Now
$$Z_f(s) = |\Delta_K|^{-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$$
 and $Z_{\widehat{f}}(s) = |\Delta_K|^{s-\frac{1}{2}} \Gamma_{\mathbb{R}}(s)^{r_1} \Gamma_{\mathbb{C}}(s)^{r_2} \zeta_K(s)$. Since $Z_f(s) = Z_{\widehat{f}}(1-s)$

$$|\Delta_{\mathcal{K}}|^{-\frac{1}{2}}\Gamma_{\mathbb{R}}(s)^{r_1}\Gamma_{\mathbb{C}}(s)^{r_2}\zeta_{\mathcal{K}}(s) = |\Delta_{\mathcal{K}}|^{(1-s)-\frac{1}{2}}\Gamma_{\mathbb{R}}(1-s)^{r_1}\Gamma_{\mathbb{C}}(1-s)^{r_2}\zeta_{\mathcal{K}}(1-s)$$

Dividing by $|\Delta_{\mathcal{K}}|^{-\frac{s+1}{2}}$ we obtain the functional equation

$$|\Delta_{\mathcal{K}}|^{-\frac{s}{2}}\Gamma_{\mathbb{R}}(s)^{r_1}\Gamma_{\mathbb{C}}(s)^{r_2}\zeta_{\mathcal{K}}(s) = |\Delta_{\mathcal{K}}|^{-\frac{1-s}{2}}\Gamma_{\mathbb{R}}(1-s)^{r_1}\Gamma_{\mathbb{C}}(1-s)^{r_2}\zeta_{\mathcal{K}}(1-s)$$

