Tiling Problems

Daniel Litt

Stanford University
April 12, 2011

Introduction

Tiles:

Introduction

Tiles:

Introduction

Tiles:

Introduction

Tiles:

Definition (Tile)

A tile is a (closed) plane polygon.

Introduction (cont.)

Tiling:

Introduction (cont.)

Tiling:

Introduction (cont.)

Tiling:

Definition (Region)

A region is a (closed) plane polygon.

Introduction (cont.)

Tiling:

Definition (Tiling)

A tiling of a region R is a decomposition of R into tiles, $R=\bigcup_{i} T_{i}$, such that if x is a point in the interior of a tile T_{i}, then it is not contained in any T_{j} for $j \neq i$.

Introduction (cont.)

Tiling Problems:

Introduction (cont.)

Tiling Problems:

- Counting Problems: How many ways are there to tile a region with a fixed set of tiles?

Introduction (cont.)

Tiling Problems:

- Counting Problems: How many ways are there to tile a region with a fixed set of tiles?
- Feasibility Problems: Can a region be tiled with a fixed set of tiles?

Introduction (cont.)

Tiling Problems:

- Counting Problems: How many ways are there to tile a region with a fixed set of tiles?
- Feasibility Problems: Can a region be tiled with a fixed set of tiles?
- Tiling problems are hard:
- Counting is \#P-complete.
- Feasibility of tiling bounded regions is NP-complete.

Introduction (cont.)

Tiling Problems:

- Counting Problems: How many ways are there to tile a region with a fixed set of tiles?
- Feasibility Problems: Can a region be tiled with a fixed set of tiles?
- Tiling problems are hard:
- Counting is \#P-complete.
- Feasibility of tiling bounded regions is NP-complete.
- Given a set of tiles, can one tile the plane with them? This is undecidable.

Counting Problems (warmup)

Tiles: 2×1 rectangles (dominos):

Counting Problems (warmup)

Tiles: 2×1 rectangles (dominos):

Region: $1 \times n$ grid.

Counting Problems (warmup)

Let T_{n} be the number of tilings of a $1 \times n$ grid by dominos.

Counting Problems (warmup)

Let T_{n} be the number of tilings of a $1 \times n$ grid by dominos.

Counting Problems (warmup)

Let T_{n} be the number of tilings of a $1 \times n$ grid by dominos.

$$
T_{n}=T_{n-2}
$$

Counting Problems (warmup)

Let T_{n} be the number of tilings of a $1 \times n$ grid by dominos.

$$
T_{n}=T_{n-2}
$$

$$
T_{1}=0, T_{2}=1
$$

Counting Problems (warmup)

Let T_{n} be the number of tilings of a $1 \times n$ grid by dominos.

$$
\begin{gathered}
T_{n}=T_{n-2} \\
T_{1}=0, T_{2}=1 \\
T_{n}= \begin{cases}0, & \text { if } n \text { is odd } \\
1, & \text { if } n \text { is even }\end{cases}
\end{gathered}
$$

We'll return to this example.

Counting Problems (trickier example)

Tiles: 2×1 rectangles (dominos):

Counting Problems (trickier example)

Tiles: 2×1 rectangles (dominos):

Region: $2 \times n$ grid.

Counting Problems (tricker example)

Let T_{n} be the number of tilings of a $2 \times n$ grid by dominos.

Counting Problems (tricker example)

Let T_{n} be the number of tilings of a $2 \times n$ grid by dominos. There are two ways to cover the leftmost column:

Counting Problems (tricker example)

Let T_{n} be the number of tilings of a $2 \times n$ grid by dominos. There are two ways to cover the leftmost column:

$$
T_{n}=T_{n-1}+T_{n-2}
$$

Counting Problems (tricker example)

Let T_{n} be the number of tilings of a $2 \times n$ grid by dominos. There are two ways to cover the leftmost column:

$$
T_{n}=T_{n-1}+T_{n-2}
$$

$$
T_{1}=1, T_{2}=2
$$

Counting Problems (tricker example)

Let T_{n} be the number of tilings of a $2 \times n$ grid by dominos. There are two ways to cover the leftmost column:

$$
T_{n}=T_{n-1}+T_{n-2}
$$

$$
T_{1}=1, T_{2}=2
$$

Fibonacci numbers!

Applications (Fibonacci identities)

- $\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\ldots=f_{n}$:

- $\sum_{i \geq 0} \sum_{j \geq 0}\binom{n-i}{j}\binom{n-j}{i}=f_{2 n+1}$
- For $m \geq 1, n \geq 0$, if $m \mid n$ then $f_{m-1} \mid f_{n-1}$.
- $\sum_{k=0}^{n} f_{k}^{2}=f_{n} f_{n+1}$

Counting Problems (dominos, $m \times n$ case)

Tiles: 2×1 rectangles (dominos):

Counting Problems (dominos, $m \times n$ case)

Tiles: 2×1 rectangles (dominos):

Region: $m \times n$ grid.

Counting Problems (dominos, $m \times n$ case)

Let $T_{m, n}$ be the number of tilings of a $m \times n$ grid by dominos. As you might expect:

Counting Problems (dominos, $m \times n$ case)

Let $T_{m, n}$ be the number of tilings of a $m \times n$ grid by dominos. As you might expect:

$$
T_{m, n}=2^{m n / 2} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{\pi j}{m+1}+\cos ^{2} \frac{\pi k}{n+1}\right)^{1 / 4}
$$

Kasteleyn (1961)

Counting Problems (dominos, $m \times n$ case)

Let $T_{m, n}$ be the number of tilings of a $m \times n$ grid by dominos. As you might expect:

$$
T_{m, n}=2^{m n / 2} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{\pi j}{m+1}+\cos ^{2} \frac{\pi k}{n+1}\right)^{1 / 4}
$$

Kasteleyn (1961)
Q: How does one prove this?

Counting Problems (dominos, $m \times n$ case)

Let $T_{m, n}$ be the number of tilings of a $m \times n$ grid by dominos. As you might expect:

$$
T_{m, n}=2^{m n / 2} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{\pi j}{m+1}+\cos ^{2} \frac{\pi k}{n+1}\right)^{1 / 4}
$$

Kasteleyn (1961)
Q: How does one prove this?
A: Pfaffians!

Matrices and Counting

Let $A=a_{i j}$ be a $2 n \times 2 n$ skew-symmetric matrix, i.e. $a_{i j}=-a_{j i}$.

Matrices and Counting

Let $A=a_{i j}$ be a $2 n \times 2 n$ skew-symmetric matrix, i.e. $a_{i j}=-a_{j i}$.

Definition (Pfaffian)

Let Π be the set of partitions of $\{1,2, \ldots, 2 n\}$ into pairs

$$
\alpha=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{n}, j_{n}\right)\right\}
$$

with $i_{k}<j_{k}$ and $i_{1}<i_{2}<i_{3}<\cdots<i_{n}$. The Pfaffian of A is defined to be

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1 j} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}}
$$

Matrices and Counting

Let $A=a_{i j}$ be a $2 n \times 2 n$ skew-symmetric matrix, i.e. $a_{i j}=-a_{j i}$.

Definition (Pfaffian)

Let Π be the set of partitions of $\{1,2, \ldots, 2 n\}$ into pairs

$$
\alpha=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{n}, j_{n}\right)\right\}
$$

with $i_{k}<j_{k}$ and $i_{1}<i_{2}<i_{3}<\cdots<i_{n}$. The Pfaffian of A is defined to be

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}} .
$$

Theorem

$$
\operatorname{pf}(A)= \pm \sqrt{\operatorname{det}(A)}
$$

Matrices and Counting

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}} .
$$

Matrices and Counting

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}} .
$$

Label the squares of a grid from 1 to $m n$. If square i is next to square j, let $a_{i j}= \pm 1$, with $a_{j i}=-a_{i j}$. Let $a_{i j}=0$ otherwise.

Matrices and Counting

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}} .
$$

Label the squares of a grid from 1 to $m n$. If square i is next to square j, let $a_{i j}= \pm 1$, with $a_{j i}=-a_{i j}$. Let $a_{i j}=0$ otherwise.

$$
\left|a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}}\right|=1 \Longleftrightarrow\left(i_{1}, j_{1}\right), \cdots,\left(i_{n}, j_{n}\right) \text { is a tiling! }
$$

Have to pick signs right.

Matrices and Counting

$$
\operatorname{pf}(A)=\sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n j} j_{n}} .
$$

Label the squares of a grid from 1 to $m n$. If square i is next to square j, let $a_{i j}= \pm 1$, with $a_{j i}=-a_{i j}$. Let $a_{i j}=0$ otherwise.

$$
\left|a_{i_{1} j_{1}} a_{i_{2} j_{2}} \cdots a_{i_{n} j_{n}}\right|=1 \Longleftrightarrow\left(i_{1}, j_{1}\right), \cdots,\left(i_{n}, j_{n}\right) \text { is a tiling! }
$$

Have to pick signs right.

Remark

If A is the adjacency matrix of an oriented graph, $\operatorname{pf}(A)$ counts oriented perfect matchings.

Counting Problems (dominos, $m \times n$ case)

Let $a_{i j}=1$ if there is an edge $i \rightarrow j$, with $a_{i j}=-a_{j i}$. Let $a_{i j}=0$ otherwise. Then $\operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}}$ is always positive!

Counting Problems (dominos, $m \times n$ case)

Let $a_{i j}=1$ if there is an edge $i \rightarrow j$, with $a_{i j}=-a_{j i}$. Let $a_{i j}=0$ otherwise. Then $\operatorname{sign}(\alpha) a_{i_{1} j_{1}} a_{i j_{2}} \cdots a_{i_{n} j_{n}}$ is always positive! So $T_{m, n}=\operatorname{sqrt}(\operatorname{det}(A))$. Compute by diagonalizing A.

Counting Problems (dominos)

Remark

In general, any planar graph has a "Pfaffian Orientation," which makes the above argument work.

Counting Problems (dominos)

Remark

In general, any planar graph has a "Pfaffian Orientation," which makes the above argument work.

But this isn't the end of the story. Consider the aztec diamond:

Counting Problems (dominos)

Remark

In general, any planar graph has a "Pfaffian Orientation," which makes the above argument work.

But this isn't the end of the story. Consider the aztec diamond:

Number of tilings is $2^{(n+1) n / 2}$. But add one more row in the middle, and the number of tilings only grows exponentially.

Feasibility Problems

- Special case of counting problems (Is the number of tilings equal to zero?)

Feasibility Problems

- Special case of counting problems (Is the number of tilings equal to zero?)
- But still hard, even if we can count: Given a sequence (x_{n} defined via an integer linear recurrence, is the truth of the statement " $x_{n} \neq 0$ for all n " decidable in finite time? This is an open problem.

Feasibility Problems

- Special case of counting problems (Is the number of tilings equal to zero?)
- But still hard, even if we can count: Given a sequence (x_{n} defined via an integer linear recurrence, is the truth of the statement " $x_{n} \neq 0$ for all n " decidable in finite time? This is an open problem.
- Given a set of tiles, can they tile the plane? This is undecidable.

A Classical Example

Can this region be tiled by dominos?

A Classical Example

Can this region be tiled by dominos?

A Classical Example

Can this region be tiled by dominos?

Each domino covers exactly one black square and one white square; but there are more white squares than black squares.

A Classical Example

But is this the only obstruction? What if we remove two squares of different colors?

A Classical Example

But is this the only obstruction? What if we remove two squares of different colors?

(Gomory)

A Classical Example

But is this the only obstruction? What if we remove two squares of different colors?

(Gomory)
Of course, if we remove more than 2 squares, a lot can go wrong.

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_{n} by dominos.

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_{n} by dominos.

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_{n} by dominos.

$1 x \begin{array}{llll}x^{2} & x^{3} & x^{4} & x^{5}\end{array}$
$p_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n-1}$
$d(x)=1+x$
Note that $d(-1)=0$.

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_{n} by dominos.

$p_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n-1}$
$d(x)=1+x$
Note that $d(-1)=0$.

$$
\begin{gathered}
p_{2 n}(-1)=0 \\
p_{2 n}(x)=\left(1+x^{2}+x^{4}+\cdots+x^{2 n-2}\right)(1+x)
\end{gathered}
$$

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_{n} by dominos.

$p_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n-1}$
$d(x)=1+x$
Note that $d(-1)=0$.

$$
\begin{gathered}
p_{2 n}(-1)=0 \\
p_{2 n}(x)=\left(1+x^{2}+x^{4}+\cdots+x^{2 n-2}\right)(1+x)
\end{gathered}
$$

But $p_{2 n+1}(x)$ is not a multiple of $d(x)$:

$$
p_{2 n+1}(-1)=1
$$

Rectangle Tilings

Label the upper-right quadrant of the plane as follows:

\vdots	\vdots	\vdots	\vdots	
		\vdots		
y^{2}	$x y^{2}$	$x^{2} y^{2}$	$x^{3} y^{2}$	\ldots
y	$x y$	$x^{2} y$	$x^{3} y$	\ldots
1	x	x^{2}	x^{3}	\ldots

Rectangle Tilings

Label the upper-right quadrant of the plane as follows:

\vdots	\vdots	\vdots	\vdots	
y^{2}	$x y^{2}$	$x^{2} y^{2}$	$x^{3} y^{2}$	\ldots
y	$x y$	$x^{2} y$	$x^{3} y$	\ldots
1	x	x^{2}	x^{3}	\ldots

If R is a region consisting of unit squares (α, β) with non-negative integer coordinates, let

$$
p_{R}(x, y)=\sum_{(\alpha, \beta) \in R} x^{\alpha} y^{\beta}
$$

Rectangle Tilings

Label the upper-right quadrant of the plane as follows:

\vdots	\vdots	\vdots	\vdots	
y^{2}	$x y^{2}$	$x^{2} y^{2}$	$x^{3} y^{2}$	\ldots
y	$x y$	$x^{2} y$	$x^{3} y$	\ldots
1	x	x^{2}	x^{3}	\ldots

If R is a region consisting of unit squares (α, β) with non-negative integer coordinates, let

$$
p_{R}(x, y)=\sum_{(\alpha, \beta) \in R} x^{\alpha} y^{\beta}
$$

If T_{i} are tiles made from unit squares, translate them so one square is at the origin, and let

$$
p_{T_{i}}(x, y)=\sum_{(\alpha, \beta) \in T_{i}} x^{\alpha} y^{\beta} .
$$

Rectangle Tilings

If R may be tiled by the T_{i} then there exist polynomials $a_{i}(x, y)$ with integer coefficients such that

$$
p_{R}(x, y)=\sum_{i} a_{i}(x, y) p_{T_{i}}(x, y)
$$

Rectangle Tilings

If R may be tiled by the T_{i} then there exist polynomials $a_{i}(x, y)$ with integer coefficients such that

$$
p_{R}(x, y)=\sum_{i} a_{i}(x, y) p_{T_{i}}(x, y)
$$

Definition

If there exist polynomials $a_{i}(x, y)$ with coefficients in a ring k, such that

$$
p_{R}(x, y)=\sum_{i} a_{i}(x, y) p_{T_{i}}(x, y)
$$

we say that the T_{i} can tile R over k.

Rectangle Tilings

Theorem

Let T_{i} be a (possibly infinite) set of tiles. Then there exists a finite subset $T_{i j}$ such that a region R may be tiled by the T_{i} over the integers if and only if it may be tiled by the $T_{i j}$.

Rectangle Tilings

Theorem

Let T_{i} be a (possibly infinite) set of tiles. Then there exists a finite subset $T_{i j}$ such that a region R may be tiled by the T_{i} over the integers if and only if it may be tiled by the $T_{i j}$.

Proof.

Hilbert Basis Theorem.

Rectangle Tilings

Let $k=\mathbb{C}$, the complex numbers. Let $V \subset \mathbb{C}^{2}$ be the set

$$
V=\left\{(x, y) \mid T_{i}(x, y)=0 \text { for all } i\right\}
$$

Rectangle Tilings

Let $k=\mathbb{C}$, the complex numbers. Let $V \subset \mathbb{C}^{2}$ be the set

$$
V=\left\{(x, y) \mid T_{i}(x, y)=0 \text { for all } i\right\}
$$

If

$$
\begin{equation*}
p_{R}(x, y)=\sum_{i} a_{i}(x, y) p_{T_{i}}(x, y) \tag{*}
\end{equation*}
$$

then $p_{R}(x, y)=0$ if $(x, y) \in V$.

Rectangle Tilings

Let $k=\mathbb{C}$, the complex numbers. Let $V \subset \mathbb{C}^{2}$ be the set

$$
V=\left\{(x, y) \mid T_{i}(x, y)=0 \text { for all } i\right\}
$$

If

$$
\begin{equation*}
p_{R}(x, y)=\sum_{i} a_{i}(x, y) p_{T_{i}}(x, y) \tag{*}
\end{equation*}
$$

then $p_{R}(x, y)=0$ if $(x, y) \in V$.

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} may tile R over \mathbb{C}.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} tile R over \mathbb{C}.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} tile R over \mathbb{C}.

Proof.

Nullstellensatz.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} tile R over \mathbb{C}.

Proof.

Nullstellensatz.

Theorem (Barnes)

Let T be a finite set of rectangular tiles, and R a rectangular region. There exists a constant K such that if the lengths of the sides of R are greater than K, then R is tileable by T if and only if it is tileable over \mathbb{C}.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} may tile R over \mathbb{C}.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} may tile R over \mathbb{C}.

Example

If $T=(1+x, 1+y)$, then I_{T} is radical. So one may detect domino tilings over \mathbb{C} by evaluating $p_{R}(-1,-1)$.

Rectangle Tilings

Theorem

Let I_{T} be the set of all polynomials that can be written as in $(*)$. If I_{T} is radical, and $p_{R}(x, y)=0$ for all $(x, y) \in V$, then the T_{i} may tile R over \mathbb{C}.

Example

If $T=(1+x, 1+y)$, then I_{T} is radical. So one may detect domino tilings over \mathbb{C} by evaluating $p_{R}(-1,-1)$.

\vdots	\vdots	\vdots	\vdots	
+1	-1	+1	+1	\ldots
-1	+1	-1	+1	\ldots
+1	-1	+1	+1	\ldots

Lozenge Tilings

This is a lozenge:

Lozenge Tilings

This is a lozenge:

This is a lozenge tiling:

Squint a little:

Squint a little:

Pick a direction for each edge. Does the outline of a region lift to a loop?

Squint a little:

Pick a direction for each edge. Does the outline of a region lift to a loop?

This condition is necessary but not sufficient; there is a sufficient geometric condition (Conway, Thurston).

This condition is necessary but not sufficient; there is a sufficient geometric condition (Conway, Thurston).
This method generalizes, but is difficult to analyze except in special cases.

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)
- Strengthen the algebra-geometric methods of Barnes.

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)
- Strengthen the algebra-geometric methods of Barnes.
- Find more sensitive obstructions to tiling.

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)
- Strengthen the algebra-geometric methods of Barnes.
- Find more sensitive obstructions to tiling.
- Characterize when coloring arguments forbid tilings.

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)
- Strengthen the algebra-geometric methods of Barnes.
- Find more sensitive obstructions to tiling.
- Characterize when coloring arguments forbid tilings.
- And more...

