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Introduction (cont.)

Tiling:

Definition (Tiling)

A tiling of a region R is a decomposition of R into tiles,
R =

⋃
i Ti , such that if x is a point in the interior of a tile Ti , then

it is not contained in any Tj for j 6= i .
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Introduction (cont.)

Tiling Problems:

Counting Problems: How many ways are there to tile a region
with a fixed set of tiles?

Feasibility Problems: Can a region be tiled with a fixed set of
tiles?

Tiling problems are hard:

Counting is #P-complete.
Feasibility of tiling bounded regions is NP-complete.
Given a set of tiles, can one tile the plane with them? This is
undecidable.
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Counting Problems (warmup)

Tiles: 2× 1 rectangles (dominos):

Region: 1× n grid.
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Counting Problems (warmup)

Let Tn be the number of tilings of a 1× n grid by dominos.

Tn = Tn−2

T1 = 0,T2 = 1

Tn =

{
0, if n is odd

1, if n is even

We’ll return to this example.
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Counting Problems (trickier example)

Tiles: 2× 1 rectangles (dominos):

Region: 2× n grid.
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Counting Problems (tricker example)

Let Tn be the number of tilings of a 2× n grid by dominos.

There are two ways to cover the leftmost column:

Tn = Tn−1 + Tn−2

T1 = 1,T2 = 2

Fibonacci numbers!
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Applications (Fibonacci identities)

(n
0

)
+
(n−1

1

)
+
(n−2

2

)
+ ... = fn:

∑
i≥0

∑
j≥0

(n−i
j

)(n−j
i

)
= f2n+1

For m ≥ 1, n ≥ 0, if m|n then fm−1|fn−1.∑n
k=0 f 2

k = fnfn+1
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Counting Problems (dominos, m × n case)

Tiles: 2× 1 rectangles (dominos):

Region: m × n grid.
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Counting Problems (dominos, m × n case)

Let Tm,n be the number of tilings of a m × n grid by dominos. As
you might expect:

Tm,n = 2mn/2
m∏
j=1

n∏
k=1

(
cos2 πj

m + 1
+ cos2 πk

n + 1

)1/4

Kasteleyn (1961)
Q: How does one prove this?
A: Pfaffians!
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Matrices and Counting

Let A = aij be a 2n × 2n skew-symmetric matrix, i.e. aij = −aji .

Definition (Pfaffian)

Let Π be the set of partitions of {1, 2, ..., 2n} into pairs

α = {(i1, j1), (i2, j2), ..., (in, jn)}

with ik < jk and i1 < i2 < i3 < · · · < in. The Pfaffian of A is
defined to be

pf(A) =
∑
α∈Π

sign(α)ai1j1ai2j2 · · · ainjn .

Theorem

pf(A) = ±
√

det(A)
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Matrices and Counting

pf(A) =
∑
α∈Π

sign(α)ai1j1ai2j2 · · · ainjn .

Label the squares of a grid from 1 to mn. If square i is next to
square j , let aij = ±1, with aji = −aij . Let aij = 0 otherwise.

|ai1j1ai2j2 · · · ainjn | = 1 ⇐⇒ (i1, j1), · · · , (in, jn) is a tiling!

Have to pick signs right.

Remark

If A is the adjacency matrix of an oriented graph, pf(A) counts
oriented perfect matchings.
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Counting Problems (dominos, m × n case)

Let aij = 1 if there is an edge i → j , with aij = −aji . Let aij = 0
otherwise. Then sign(α)ai1j1ai2j2 · · · ainjn is always positive!

So Tm,n = sqrt(det(A)). Compute by diagonalizing A.
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Counting Problems (dominos)

Remark

In general, any planar graph has a “Pfaffian Orientation,” which
makes the above argument work.

But this isn’t the end of the story. Consider the aztec diamond:

Number of tilings is 2(n+1)n/2. But add one more row in the
middle, and the number of tilings only grows exponentially.
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Feasibility Problems

Special case of counting problems (Is the number of tilings
equal to zero?)

But still hard, even if we can count: Given a sequence (xn
defined via an integer linear recurrence, is the truth of the
statement “xn 6= 0 for all n” decidable in finite time? This is
an open problem.

Given a set of tiles, can they tile the plane? This is
undecidable.
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A Classical Example

Can this region be tiled by dominos?

Each domino covers exactly one black square and one white
square; but there are more white squares than black squares.
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Feasibility Problems

A Classical Example

But is this the only obstruction? What if we remove two squares of
different colors?

(Gomory)
Of course, if we remove more than 2 squares, a lot can go wrong.
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Rectangle Tilings (Toy Example)

Let’s return to tiling a 1× n rectangle Rn by dominos.

1 x x2 x3 x4 x5

pn(x) = 1 + x + x2 + x3 + · · ·+ xn−1

d(x) = 1 + x
Note that d(−1) = 0.

p2n(−1) = 0.

p2n(x) = (1 + x2 + x4 + · · ·+ x2n−2)(1 + x)

But p2n+1(x) is not a multiple of d(x):

p2n+1(−1) = 1
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Rectangle Tilings

Label the upper-right quadrant of the plane as follows:

...
...

...
...

y 2 xy 2 x2y 2 x3y 2 · · ·
y xy x2y x3y · · ·
1 x x2 x3 · · ·

If R is a region consisting of unit squares (α, β) with non-negative
integer coordinates, let

pR(x , y) =
∑

(α,β)∈R

xαyβ.

If Ti are tiles made from unit squares, translate them so one
square is at the origin, and let

pTi
(x , y) =

∑
(α,β)∈Ti

xαyβ.
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Rectangle Tilings

If R may be tiled by the Ti then there exist polynomials ai (x , y)
with integer coefficients such that

pR(x , y) =
∑
i

ai (x , y)pTi
(x , y).

Definition

If there exist polynomials ai (x , y) with coefficients in a ring k, such
that

pR(x , y) =
∑
i

ai (x , y)pTi
(x , y),

we say that the Ti can tile R over k.
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Rectangle Tilings

Theorem

Let Ti be a (possibly infinite) set of tiles. Then there exists a finite
subset Tij such that a region R may be tiled by the Ti over the
integers if and only if it may be tiled by the Tij .

Proof.

Hilbert Basis Theorem.
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Rectangle Tilings

Let k = C, the complex numbers. Let V ⊂ C2 be the set

V = {(x , y) | Ti (x , y) = 0 for all i}.

If
pR(x , y) =

∑
i

ai (x , y)pTi
(x , y), (∗)

then pR(x , y) = 0 if (x , y) ∈ V .

Theorem

Let IT be the set of all polynomials that can be written as in (∗).
If IT is radical, and pR(x , y) = 0 for all (x , y) ∈ V , then the Ti

may tile R over C.
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Theorem

Let IT be the set of all polynomials that can be written as in (∗).
If IT is radical, and pR(x , y) = 0 for all (x , y) ∈ V , then the Ti

tile R over C.

Proof.

Nullstellensatz.

Theorem (Barnes)

Let T be a finite set of rectangular tiles, and R a rectangular
region. There exists a constant K such that if the lengths of the
sides of R are greater than K , then R is tileable by T if and only if
it is tileable over C.
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Theorem

Let IT be the set of all polynomials that can be written as in (∗).
If IT is radical, and pR(x , y) = 0 for all (x , y) ∈ V , then the Ti

may tile R over C.

Example

If T = (1 + x , 1 + y), then IT is radical. So one may detect
domino tilings over C by evaluating pR(−1,−1).

...
...

...
...

+1 −1 +1 +1 · · ·
−1 +1 −1 +1 · · ·
+1 −1 +1 +1 · · ·
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Lozenge Tilings

This is a lozenge:

This is a lozenge tiling:
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Squint a little:

Pick a direction for each edge. Does the outline of a region lift to
a loop?
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Feasibility Problems

This condition is necessary but not sufficient; there is a sufficient
geometric condition (Conway, Thurston).

This method generalizes, but is difficult to analyze except in
special cases.
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This condition is necessary but not sufficient; there is a sufficient
geometric condition (Conway, Thurston).
This method generalizes, but is difficult to analyze except in
special cases.
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Open Problems

Can the plane be tiled by tiles with five-fold symmetry?
(Kepler)

Strengthen the algebra-geometric methods of Barnes.

Find more sensitive obstructions to tiling.

Characterize when coloring arguments forbid tilings.

And more...
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