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1. Introduction

[I’d like to talk about some connections between topology, number theory, and algebraic geometry, arising
from the study of configurations of points in a space.]

Topology: If X is a finite CW complex, we let Symn(X) := Xn/Σn (this is the configuration space of n
unordered points on X). What is the homotopy type of Symn(X)?

Number Theory: The Weil Conjectures: Let X/Fq be a variety. What does the generating function

ζX(t) :=

∞∑
n=0

#|Symn(X)(Fq)|tn

look like? Note:
d

dt
log ζX(t) =

∞∑
n=0

#|X(Fqn)|tn

(exercise.)
Analogous questions for zeta and L-functions associated to number fields...
Algebraic Geometry: Let X be a variety over a field k. What is the geometry of Symn(X)? [E.g.

what is the theory of 0-cycles on X?]
I’ll discuss two types of answers to these questions, and their interplay.

(1) Stabilization: What does
Sym∞(X) := lim−→

n

Symn(X)

look like? [Maps Symn(X)→ Symn+1(X) induced by choice of basepoint.]
(2) Rationality: What is the relationship between Symn(X) and Symm(X)? [I call this rationality

because it relates to the rationality of certain generating functions.]

Topology: To answer (1), we have

Theorem 1 (Dold-Thom). Suppose X is a finite, connected CW complex. Then

Sym∞(X) 'w
∏
i≥1

K(Hi(X,Z), i).

[The K(G,n) are Eilenberg-Maclane spaces. I’ll come back to this theorem later.]
There are many ways to answer (2), but here’s a simple one. Namely, describe the generating function

ZX(t) :=

∞∑
n=0

χc(Symn(X))tn.

[Here χc denote the Euler characteristic with compact support.]
Two facts suggest an approach:

(1) Suppose Z ⊂ X is closed. Then χc(X) = χc(Z) + χc(X \ Z).
(2) If X = X1 tX2, then Symn(X) =

⊔
p+q=n Symp(X1)× Symq(X2).

Putting these facts together, we have

ZX(t) = ZX1
(t) · ZX2

(t).

[Let’s package this information in a slightly different way, which will motivate our algebro-geometric
approach later.]
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Definition 2. Let

K0(CW ) =

( ⊕
X reasonable

Z[X]

)
/{[X] = [Z] + [X \ Z] | Z cl

↪→ X}

[here “reasonable” means, say, that X admits a stratification by finitely many copies of Rk, e.g. compact
manifolds, finite CW complexes, etc.]

Define multiplication by [X] · [Y ] = [X × Y ].

Then (1) says that χc : K0(CW )→ Z is a homomorphism, and (2) says that

Zmot : K0(CW )→ 1 + tK0(CW )[[t]],

ZmotX (t) :=

∞∑
n=0

[Symn(X)]tn

is a homomorphism, with ZX(t) = χc(Z
mot
X (t)).

[There’s actually a ring structure on the right-hand-side making this a ring homomorphism.]

Proposition 3. χc : K0(CW )→ Z is an isomorphism.

Proof. Clearly surjective.
K0(CW ) is generated as an abelian group by [Rk] = [R]k. So let’s compute [R]:

R = • R //Roo

So [R] = 2[R] + 1, thus [R] = −1. Thus χc is injective. �

Proposition 4. ZX(t) is a rational function.

Proof. Suffices to show ZmotX (t) is a rational function. As K0(CW ) is generated by [pt], suffices to show
Zmotpt (t) is rational. But

Zmotpt (t) = 1 + [pt]t+ [pt]t2 + · · · = 1

1− [pt]t
.

Unwinding the isomorphism of Proposition 3, we have

ZX(t) = (1− t)−χc(X).

�

2. Some Motivic Questions

Algebraic Geometry: [This approach inspires the following definition:]

Definition 5. Let k be a a field. Let

K0(Vark) =

 ⊕
X/k a variety

Z[X]

 /{[X] = [Z] + [X \ Z] | Z cl
↪→ X}.

Let [X] · [Y ] := [X × Y ].

[This ring is sometimes called “the ring of motives” or the Grothendieck ring of varieties.]
Some facts about this ring:

• Not a domain (Poonen, Kollar, etc.); not Noetherian...
• Homomorphisms:

– k = Fq: [X] 7→ #|X(Fq)|
– Any k: Poincaré polynomial, Euler characteristic in Grothendieck ring of Galois reps
– k = C: Hodge polynomial...
– k = C: K0(VarC)/L ' Z[SB] (Larsen, Lunts), where SB is the monoid of stable birational

equivalence classes of smooth projective varieties.
• Open Questions

– Is L := [A1] a zero divisor?
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– If [X] = [Y ], are X and Y equidecomposable?

Our two questions become:

(1) Motivic Stabilization of Symmetric Powers (MSSP, Ravi Vakil, Melanie Wood): Does

lim
n→∞

[Symn(X)]

converge in ̂K0(Vark)? [I’ll discuss this question in two completions of the Grothendieck ring. Either
complete K0(Vark) at L or invert L and complete at the dimension filtration.]

(2) (Motivic Weil Conjectures, Kapranov) Let

ZmotX (t) :=

∞∑
n=0

[Symn(X)]tn.

Is ZmotX rational? Does it satisfy a functional equation? [What is the analogue of the Riemann
Hypothesis? Note that ZmotX (t) specializes to ζX(t) under the map [X] 7→ #|X(Fq)|.]

Theorem 6 (Disappointing theorem, Larsen and Lunts, 2002). Let X be a surface over C. Then ZmotX (t)
is rational if and only if X is rational or birationally ruled.

[Regardless, I want to discuss some ways that ZmotX behaves like a rational or meromorphic function. Let’s
do some examples:]

Example 1 (L := [A1]). I claim that Symn(A1) ' An. “Proof”: send an unordered tuple of elements of
A1 to the coefficients of the monic polynomial with that tuple as its roots. [Actual proof—the fundamental
theorem on symmetric polynomials.]

Example 2 (L[X]). I claim [Symn(A1×X)] = Ln[Symn(X)]. “Proof” (Totaro): This is surprisingly difficult,
and uses Hilbert’s Theorem 90 in its full generality.

Corollary 7.

ZmotL (t) =
1

1− Lt

ZmotPn (t) =
1

(1− t)(1− Lt) · · · (1− Lnt)
.

Completing K0(Vark) at L, [Symn(P1)] = [Pn] converge to

1 + L + L2 + L3 + · · ·

[Similar statement for Grassmannians, flag varieties, affine algebraic groups, etc.]

3. Curves

Example 3 (Smooth proper algebraic curves of genus g w/ a rational point). There is a map πn : Symn(C)→
Picn(C) sending a divisor D to the line bundle O(D). Furthermore,

π−1([L)]) ' PΓ(C,L).

[The points in the fiber π−1([L]) are exactly the divisors linearly equivalent to D; namely the roots of
meromorphic functions with poles at D. These are precisely global sections of O(D), up to scaling.] By
Riemann-Roch, and cohomology and base change, this is a (Zariski!) Pn−g-bundle for n ≥ 2g − 1. [This
requires a rational point for the representability of the Zariski Picard functor.] Thus

[Symn(C)] = [Pn−g][Jac(C)]

for n ≥ 2g − 1.

Corollary 8 (Kapranov). Let C be a smooth proper curve with a rational point. Then

ZmotC (t) =
p(t)

(1− t)(1− Lt)
where p(t) is a polynomial of degree 2g. ZmotC (t) satisfies a functional equation by Serre duality.

lim
n→∞

[Symn(C)] = [Jac(C)](1 + L + L2 + · · · )
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in K0(Vark) completed at (L).

For example, if E is an elliptic curve,

ZmotE (t) =
1 + ([E]− [P1])t+ Lt2

(1− t)(1− Lt)
.

[Note that this implies part of the Weil conjectures for curves. Kapranov leaves the hypothesis that C
has a rational point implicit—however, we have]

Theorem 9 (L–). Let C be a smooth proper genus 0 curve with no rational point—then ZC(t) is rational.

[To my knowledge, the higher genus case is open—studying the Abel-Jacobi map for smooth proper curves
with no rational points is pretty interesting, and related to the Brauer group of the Jacobian. Now that
we’ve talked a bit about rationality for curves, let’s talk about stabilization:]

Corollary 10. In ̂K0(Vark) [recall, this is the completion of the Grothendieck ring at (L)],

lim
n→∞

[Symn(C)] = [Jac(C)](1 + L + L2 + · · · )

for C a smooth proper curve with a rational point.

[I’d like to draw analogies between this result and results in number theory and topology—I’ll expand on
these connections for the rest of the talk.]

Topology: Recall from the Dold-Thom theorem that

Sym∞(C) 'w K(H1(C,Z), 1)×K(H2(C,Z), 2) ' K(Z2g, 1)×K(Z, 2).

Also, we have
Jac(C) = H0(C,ωC)∨/H1(C,Z) 'w K(H1(C,Z), 1)

CP∞ = pt∪A1 ∪ A2 ∪ · · · 'w K(Z, 2)

Thus the equality of Corollary 10 is an algebro-geometric analogue of the Dold-Thom theorem, for curves.
Number Theory: Let C/Fq be a smooth proper curve. Then if ζC(t) is the zeta function of C, we have

rest=1 ζC(t) =
#| Jac(C)(Fq)|

1− q
.

[This is analogous to the analytic class number formula for zeta functions of number fields (e.g. the Beilinson-
Lichtenbaum Conjectures).]

Similarly, we have

rest=1 Z
mot
C (t) =

[
(1− t)ZmotC (t)

]
t=1

= lim
n→∞

[Symn(C)] = [Jac(C)](1 + L + L2 + · · · )“ = ”
[Jac(C)]

1− L
.

[So we can think of the Dold-Thom theorem of being a “topological” analogue to the analytic class number
formula.]

4. Surfaces

[At first glance, many of these relationships seem to break down for algebraic surfaces, due to the “dis-
appointing theorem” of Larsen and Lunts I discussed earlier—namely that the zeta functions of algebraic
surfaces are in general not rational. In spite of this fact, I’d like to persuade you that in some ways, these
power series behave as if they are rational or meromorphic. This is the “analytic number theory” aspect of
the title of this talk.]

Suppose we are interested in understanding

lim
n→∞

[Symn(X)]

for X a smooth projective surface. As before, this is formally equal to

[(1− t)ZX(t)]t=1

in any completion of K0(Vark). [This limit exists for rational and birationally ruled surfaces.] If ZX(t) were
the power series of a meromorphic function, we would expect this limit to exist if its power series expansion
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were valid at t = 1—namely, if ZX(t) had no poles in the unit ball other than a pole of order one at t = 1.
To understand this possibility, we need a small digression:

4.1. The Newton polygon lies above the Hodge polygon.

Definition 11 (Newton Polygon). Let K be a non-archimedean local field (e.g. Qp or Fp(t)). Let p(t) =∑
n anx

n ∈ K[t]. Then the Newton polygon of p is the lower convex hull of the points (i, vK(ai)).

Theorem 12. The slopes of the line segments appearing in the Newton polygon of p are (additiveley) inverse
to the valuations of the roots of p (in its splitting field.)

The relevance of this theorem is the following:

Theorem 13 (Grothendieck, Dwork, Deligne, Katz, Ogus, Mazur, ...). Let X/Zp be a smooth projective
variety of dimension n. Then

ζXFp
(t) =

2n∏
i=0

pi(t)
(−1)i+1

where pi(t) ∈ Z[t] is a polynomial of degree bi(XC). The roots of the pi have archimedean absolute value
q−i/2.

Furthermore, the Newton polygon of pi with respect to the p-adic valuation lies above the degree i Hodge
polygon of XC.

[This is far from the most general version of this theorem—also, I won’t define the Hodge polygon, though
I’ll give some examples. The take-away, though, should be that the p-adic valuations of the roots and poles
of ζXFp

are controlled by the Hodge theory of X.]

Example 4. Let E/Zp be an elliptic curve. Its degree 1 Hodge polygon is

•

• •

�������

This is equal to its (degree 1) Newton polygon if EFp
is ordinary; if it is super-singular, its Newton polygon

is

•

•

ppppppppppppp

[So in particular, these polygons are generically equal—indeed, the Newton polygon is generically equal
to the Hodge polygon in families.]

Since we’re interested in the “valuations” of “poles” of ZmotX (t), I’d like to persuade you that this kind
of analytic information is remembered by ZmotX (t). I’ll first state a theorem for curves of genus g; here the
degree 1 Hodge polygon is:

•

•
g
•

g

�������

Definition 14 (L-adic Newton polygon). Let p(t) =
∑
n ant

n ∈ K0(Vark)[t] be a polynomial. Then the
L-adic Newton polygon of p is the lower convex hull of (i, vL(ai)), where vL(x) ∈ Z≥0 ∪ ∞ is the greatest
integer n such that x ∈ (Ln).

Theorem 15 (L–). Let C be a smooth proper curve/k, with a rational point, and let p(t) be the numerator
of ZmotC (t). Then the L-adic Newton polygon of p(t) lies above the degree 1 Hodge polygon of C; if k = k̄
and char(k) = 0, the two polygons are equal.
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[Note that this implies Katz-Mazur-Ogus if k = Fq and X is a curve.]

Proof. Riemann Roch and Serre duality for lies above; the characteristic zero statement is pretty interesting
and relies on e.g. the fact that the theta divisor of a curve is not stably birational to its Jacobian. �

Now let’s unwind this reasoning in the case of higher-dimensional varieties. We wish to know when ZX(t)
has a pole of L-adic valuation 0. Katz-Mazur-Ogus predicts this will happen if

h0(X,Ω2k
X ) 6= 0

for some k; for surfaces, this is precisely the non-vanishing of

h0(X,ωX).

[So the failure of Symn(X) to converge in ̂K0(Vark) should be taken as evidence that ZmotX (t) “behaves like”
a meromorphic function.] And indeed, we have

Theorem 16 (L–). Suppose char(k) = 0 and let X be a smooth projective surface with h0(X,ωX) > 0. Then

lim
n→∞

[Symn(X)]

does not exist in ̂K0(Vark). Furthermore, if either

(1) L is not a zero divisor in K0(Vark), or
(2) [X] = [Y ] implies X and Y are equidecomposable

then MSSP (convergence in the completion of K0(Vark)[L−1] at the dimension filtration) also fails for such
X.

Proof. Uses:

(1) Explicit desingularization of Symn(X) (the Hilbert scheme of n points on X) [constructing such
desingularizations for dim(X) > 2 is an important open problem].

(2) The birational geometry of Symn(X); in particular, rationally connected subvarieties must lie tangent
to isotropic subspaces for 2-forms on Symn(X). [This is related to Bloch’s conjecture about 0-cycles
on surfaces.]

�

Remark 17. Melanie Matchett Wood has given an alternative proof of this result, using work of Donu
Arupura.

In particular, our “analytic” heuristics for the class number formula for ZmotX (t) have given the right
prediction.

[I’d like to conclude with some open questions on related issues.]

(1) Is ZmotX (t) meromorphic or rational in some sense? [In particular, it’s rational in various specializations—
is there a universal such specialization that can be explicitly described? To make this precise, I’d
guess that ZmotX (t) is rational over the Grothendieck ring of Chow motives.]

(2) Construct explicit desingularizations of Symn(X).
(3) Suggests conjectures on birational geometry of Hilbn(X) for X a smooth projective surface.
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