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Theorem

The completed zeta function Z(s) = w—%r(;)g(s) admits an
analytic continuation with a simple pole at s = 1 with residue 1,
and satisfies the functional equation

TEN(3)C(s) = 7 7 T(A2)¢(L — )

We want to understand the local factors (. (s) = f%r(g) and
Cp(s) = = 15 as integrals over R and Qp.



Fourier Theory over R

Let S(R) denote the space of Schartz functions on R: the
C-vector space of smooth functions f : R — C such that
(" : R — C has rapid decay for all n > 0.

The field R is a locally compact Abelian group which is
Pontryagin self-dual, R = R.



Fourier Theory over R

Let S(R) denote the space of Schartz functions on R: the
C-vector space of smooth functions f : R — C such that
(" : R — C has rapid decay for all n > 0.

The field R is a locally compact Abelian group which is
Pontryagin self-dual, R = R.

Definition

For fx, € S(R) define the Fourier transform

foo(u) = / Fro (X) Xoo,u(x)dx = / fro(x)e 2 dx
R R
Define the inverse Fourier transform

fOO(X):/R?;O(U)Wdu:/Rio(U)GZﬂ—iuxdu



Fourier Theory over R

Example (Gaussian Function)
Let foo(x) = e~ be the Gaussian function. Then

?;O(u):/Rfoo(X)Xoo’u(X)dX:/e_sze—27riude

R

:/eCX200S(27rux)dx—i/eCX2sin(27Tux)dx
R R

7CX2 T - w22
= [ e “cos(2mux)dx =/ Te <
R

Hence the Gaussian function f(x) = e~™ is Fourier self-dual,
foo = fo-




Fourier Theory over R

Fix the Haar measure d*x on R*. We have d*x = %.

Example
(Local factor (xo(s) = W_%r(%)) Let foo(x) = e ™ be the
Gaussian function. Then foo = f5, and we have

Zs_(s) = /}RX |x|*foo (x)d™ x = /R \x\s_lfoo(x)dx = w—ér(g)



Fourier Theory over R

Fix the Haar measure d*x on R*. We have d*x = %.

Example
(Local factor (xo(s) = W_%r(%)) Let foo(x) = e ™ be the
Gaussian function. Then foo = f5, and we have

Zs_(s) = /}RX |x|*foo (x)d™ x = /R \x\s_lfoo(x)dx = w—ér(g)

For this use the integral definition of the Gamma function

so indeed Z¢_(s) = (o (s).



Fourier Theory over R

Example (Bessel Function)
Consider the modified Bessel functions

1 X\ 2n+s ml_g(x) — Is(x
W)=Y s () K = 5 s

= nl(n+s+ sin(sx)
Is(x) and Ks(x) are the two linearly independent solutions to the

modified Bessel equation

LB dn
dx? dx

~ (X +sH)f =0

The modified Bessel function K, (x) can be written as an inverse
Fourier transform of ||(1,u)||72° = (1 + u?)~° by

2m®
1—|—U s 727r/uxd 7Xsf— 1 27 lx
L+ S LARACLED



Integration over Q,

Fix a Haar measure dx on @, normalized so that pr dx =1. We
use the decompositions Zp = [[o<<, 1 Zk where
Zk={x€Zp|x=k+O(p)}, and Zp =[], ka;.

Example



Integration over Q,

Fix a Haar measure dx on @, normalized so that pr dx =1. We
use the decompositions Zp = [[o<<, 1 Zk where
Zk={x€Zp|x=k+O(p)}, and Zp =[], ka;.

Example

-1
/dxzp
zy p

For this use Zp = [[o<<p_1 Zk SO

1 p-1
dx = /dx_ 1_p 1
/ZX 2 p p

1<k<p-1 1<k<p—1



Integration over Q,

Example
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Integration over Q,

Example

p—1 1
x|2dx = R(s) > -1
I

psl

For this use Zp = [ ka; and change variables x = p*u so

/|x|5dx—Z/ x[sdx =) " p /k dx

k>0 k>0 Zp
RS T
k>0 P >0 p l—p=t

which converges for (s) > —1.



Integration over Q,

Example

P



Integration over Q,

Example

p—1 ps+1
Qp—Zp p p

For this we use Qp — Zp = [[4>1 P~ *Z} s0

x|Sdx = pks/ dx = pk(5+1) dx
/Q b=t | ax=Y .

k>1 k>1 P
_ Py ey P P

Pi= p l-pt
which converges for (s) < —1. Note that the same integral
over Q, does not exist!



Integration over Q,

For x € Qp let [x], denote the fractional part of x, that is

xip+ . +x_1pt k<O

[P+ .+ xo1pt +x0p? +xapt + . = .
0 otherwise

Note that for x € Q, x — >_ [x], € Z.



Integration over Q,

For x € Qp let [x], denote the fractional part of x, that is

xip+ . +x_1pt k<O

[P+ .+ xo1pt +x0p? +xapt + . = .
0 otherwise

Note that for x € Q, x — >_ [x], € Z.

For u € Q, consider the additive character x, , : Q, — U(1) given
for x € Qp by Xp.u(x) = e27[*e. The conductor of y,, is the
kernel |u|pZp € Qp. Then xp u(x) is additive in u, x € Q, and

satisfies Xp.u(x) = Xp,—u(X) = Xp,u(—X).




Integration over Q,

Example

/ Xp,u(X)dX — / efzﬂ'i[UX]de — Pik’)/p(upk) ke
kap kap

where 7,(x) is the p-adic Gaussian defined by

: 1 veZ
Yplu :/ X ,uXdX:/ e—27rl[ux]deZ p
o) = [ pulx= [ , Lo



Integration over Q,

Example

/ Xp,u(X)dX — / efzﬂ'i[UX]de — pfk'yp(upk) ke
pkzp kap

where 7,(x) is the p-adic Gaussian defined by

: 1 S/
Yp(u) :/Z e‘27”[”X]de:{ vESp

0 uéZ,
For k = 0 the integral depends only on the conductor |u|,Z,. For
k # 0 we change variables so

Xp,u(X)dx = /

P Zp

/ XP,LI(X)dX — / 6727Ti[uxlpdx _ pfk/ 6727ri[upkx];,dx _ p—k,yp(upk)
P*Zp P*Zp Zp



Integration over Q,

Example

/P"Z

pT?lp_k lulp < pk

5 )(p7u(x)dx = /kzx e 2miluxp g = *P_(k""l) ulp = pk+1 keZ
p ” 0 july > pr?



Integration over Q,

Example

ELpk ulp < p
/kzx Xp.u(x)dx = / e 2 d = —p (D Julp = pkt ke
P Zp

k7%
= 0 lulp > pktt

For k =0 we use Z; = Zp — pZp so

/ Xp,u(X)dX _ / 6727ri[ux]pdx _ / 6727ri[ux]pdx . / 6727ri[ux]pdx
7 Zx Zy pZp

P
—1
. .- ) pT ulp <1
=Yp(u) — p~ / e 2 Pdodx = yp(u) = plyp(up) = S —p 1 Julp = p

Zp

0 lulp > p



Integration over Q,

For k # 0 we change variables so

/ Xp,u(X)dx :/ e 2milddeqx = pk/ o 2milup*xlp
Py P z3

pT?lpik Julp < p*

—k k —(k+1 k+1 _
=p "yp(up ) -p (k+ )f}/p(up + ) =< —p (k+1) ’U’p _ pk+1
0 |ulp > pFtt



Fourier Theory over Q,

Let S(Qp) denote the space of Bruhat-Schwartz functions on Qp:
the C-vector space of compactly supported locally constant
functions f : Q, — C.

The field Qp is a locally compact Abelian group which is

Pontryagin self-dual, @p = Qp.



Fourier Theory over Q,

Let S(Qp) denote the space of Bruhat-Schwartz functions on Qp:
the C-vector space of compactly supported locally constant
functions f : Q, — C.

The field Qp is a locally compact Abelian group which is

Pontryagin self-dual, @p = Qp.

Definition
For f, € S(Qp) define the Fourier transform

?,\)(U) = / fp(X)vau(X)dx — / fp(X)e—27ri[ux]de
P Qp
Define the inverse Fourier transform

500 = [ Bhpide = [ et

p p



Fourier Theory over Q,

Recall by a previous example,

/ Xp,u(X)dX — / efzﬂ'i[UX]de — Pik’)/p(upk) ke
pkzp kap

Example (p-adic Gaussian Function)
Let fo(x) = vp(x) be the p-adic Gaussian function. Then

B0) = [ fbdxpulix = [ xpulx)dx

p Zp

:/ e 2milxdp gy = fo(u)
Zp

by a previous example. Hence the p-Aadic Gaussian function
fo(x) = vp(x) is Fourier self-dual, f, = f,.



Fourier Theory over Q,

Example

5 mal)x = () (1 — ) 21 )
ez, PP — P pe



Fourier Theory over Q,

Example

1— ps+1|u|;s—1 - 1>
1— ps+1

The integral depends only on the conductor |u|,Zp. If u € Z, with
conductor p* for k > 0 we have

| Wixeutax = p(0) (1 - 5
Qp—Zp

L Wvmataix= [ xlge b= 3o [ et
- —&p

p—4Lp p >1 p~tZy

=Y plere /

e 2P ey = P13 perne Lty

p
>1 Zy Pz« P
1— ps+1‘u|;5_1
T

If u & Zp with conductor pX for k < 0 the above integral vanishes.



Fourier Theory over Q,

Fix a Haar measure d*x on Q7 normalized so that fo d*x = 1.
P

We have d*x = -2 dx
p—11Ix[p"

Example
(Local factor (p(s) = 1_}375) Let f,(x) = vp(x) be the p-adic

Gaussian function. Then E, = f, and we have

1
Zs (s / x|2f, ><X:/ x|2d*x = s#0
p ’ | Zp| ’p 1_p75




Fourier Theory over Q,

Fix a Haar measure d*x on Q7 normalized so that fo d*x = 1.
P

We have d*x = -2 dx
p—1|x|p

Example

(Local factor (p(s) = 1_}375) Let f,(x) = vp(x) be the p-adic

Gaussian function. Then E, = f, and we have

Zo(s) = / XIS fo(x)d*x = / N
Qp

For this we use Z, = [ [~ P*Z so

SaX —ks Xy —ks __
/x|dx Zp dx Zp _7p—5

k>0 k>0

s#0



Fourier Theory over Q,

Example (p-adic Bessel Function)

The modified p-adic Bessel function K, s(x) can be written as an
inverse Fourier transform of ||(1, u)||~2° = max(1, |u|,) "%,
normalized by 1_{3%25 by

1

1— p—2s+1|X|l%s—1
1— p—2s Q

1— p—25+1

max(1, |u],) "2 e dy = ~,(x)



Fourier Theory over Q,

Example (p-adic Bessel Function)

The modified p-adic Bessel function K, s(x) can be written as an
inverse Fourier transform of ||(1, u)||~2° = max(1, |u|,) "%,
normalized by 1_;7,25 by

—2s+11,,25—1
1 —2s 27i[ux] 1—p |X|p
1-p2 Jg max(1,|ulp) e Pdu = p(x) 1_ p2si1
p

By previous examples,

1 —2s 2mifux]
=T max(1, |ulp)"*%e Pdu

b

_ 1 / e27-ri[ux]pdu+ 1 / ‘u|72se27ri[ux]pdu

1— p—2s Z 1— p—2s Q-7 P

—2s+1|,,|125—1 —2s+1|,,(25—1

_ Yp(x) Yp(x) <(1 _ —25)1 —p = lulp _ 1) = (x)l —p >t Ix|5?

1— p72s 1— p72s 1— p72s+1 P 1— p72s+1



Fourier Theory over Ag

Let S(Ag) denote the space of Bruhat-Schwarz functions on Ag:
the C-vector space of finite C-linear combinations of monomial
Schwartz functions f : Ag — C, namely f(x) =[], f.(x,) for

f, = 7, for all but finitely many finite places v of Q.



Fourier Theory over Ag

Let S(Ag) denote the space of Bruhat-Schwarz functions on Ag:
the C-vector space of finite C-linear combinations of monomial
Schwartz functions f : Ag — C, namely f(x) =[], f.(x,) for

f, = 7, for all but finitely many finite places v of Q.

Definition

For f € S(Aq) define the Fourier transform

f(U)Z/A f(X)Xu(X)dx:/ F(x)e~ 2wl 4
Q

Ag

Define the inverse Fourier transform

F(x) = /A Flu)xa(x)du = / Flu)e2 1 gy
Q

Ag

For f =[], f, a monomial Schwartz function we have f= 11, .



Zeta Integrals over Ag

Definition
For f € S(Aq) define the global zeta integral

Z,r(s):/]I Ix|°f(x)d™x

For f =[], f, a monomial Schwartz function we have
Ze(s) =11, Z¢,(s) for R(s) > 1.



Zeta Integrals over Ag

Definition
For f € S(Aq) define the global zeta integral

Z,r(s):/]I Ix|°f(x)d™x

For f =[], f, a monomial Schwartz function we have
Ze(s) =11, Z¢,(s) for R(s) > 1.

Example (Completed Riemann Zeta Function)
Let f =[], v be the global Gaussian function. Then f=f, and

1
1—p—s

Ze(s) = [[ ze(s) =n 21D ]

so indeed Z¢(s) = Z(s).



Zeta Integrals over Ag

Example (Non-Holomorphic Eisenstein Series)

The non-holomorphic Eisenstein series Es(z) has Fourier expansion
Es(z) = 3 ez Es(y)ne®™ ™. lts coefficients are given

Z(2s—1)

Es(z) :y5+ 2(25)

2 .
v 2; Zia9) 1Y Ky @rlaly)onas(n)et



Zeta Integrals over Ag

Example (Non-Holomorphic Eisenstein Series)

The non-holomorphic Eisenstein series E5(z) has Fourier expansion
Es(z) = 3 ez Es(y)ne®™ ™. lts coefficients are given

Z(2S — 1) 1— 2 _1 1 oi
— s s s TTINnX
ES(Z) - y + Z(25) y + n§€Z Z(25) |f7| 2.y2 Ks—%(2ﬂ-|n‘y)alf2s(n)e

_1 1 s sl 1
The 5555102y 2 K,_1(27lnly) = 55 £ 1012y 2 K1 (27nly)
is coming from the Bessel function. The generalized divisor sum

o1-2s(n) is coming from the p-adic Bessel functions:

f2s+1’n’123571

T (o) it —) = ¥ =l

d|n

Indeed Es(z) can be viewed as a certain integral over Ag.



