Fourier Theory on $\mathbb R$ and $\mathbb Q_p$

Aleksander Shmakov

University of Georgia

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$\zeta(s) = \sum_{\substack{n \subseteq \mathbb{Z} \\ \mathsf{ideal}}} \frac{1}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \\ \mathsf{prime}}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

Motivation: Riemann Zeta Function

Consider the Riemann zeta function

$$\zeta(s) = \sum_{\substack{n \subseteq \mathbb{Z} \\ \mathsf{ideal}}} \frac{1}{n^s} = \prod_{\substack{p \subseteq \mathbb{Z} \\ \mathsf{prime}}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

Theorem

The completed zeta function $Z(s)=\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ admits an analytic continuation with a simple pole at s=1 with residue 1, and satisfies the functional equation

$$\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \pi^{-\frac{1-s}{2}}\Gamma(\frac{1-s}{2})\zeta(1-s)$$

We want to understand the **local factors** $\zeta_{\infty}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$ and $\zeta_{p}(s) = \frac{1}{1-p^{-s}}$ as integrals over \mathbb{R} and \mathbb{Q}_{p} .

Let $\mathcal{S}(\mathbb{R})$ denote the space of Schartz functions on \mathbb{R} : the \mathbb{C} -vector space of smooth functions $f:\mathbb{R}\to\mathbb{C}$ such that $f^{(n)}:\mathbb{R}\to\mathbb{C}$ has rapid decay for all $n\geq 0$. The field \mathbb{R} is a locally compact Abelian group which is **Pontryagin self-dual**, $\widehat{\mathbb{R}}=\mathbb{R}$.

Let $\mathcal{S}(\mathbb{R})$ denote the space of Schartz functions on \mathbb{R} : the \mathbb{C} -vector space of smooth functions $f:\mathbb{R}\to\mathbb{C}$ such that $f^{(n)}:\mathbb{R}\to\mathbb{C}$ has rapid decay for all $n\geq 0$.

The field $\mathbb R$ is a locally compact Abelian group which is **Pontryagin self-dual**, $\widehat{\mathbb R}=\mathbb R.$

Definition

For $f_\infty \in \mathcal{S}(\mathbb{R})$ define the Fourier transform

$$\widehat{f}_{\infty}(u) = \int_{\mathbb{R}} f_{\infty}(x) \chi_{\infty,u}(x) dx = \int_{\mathbb{R}} f_{\infty}(x) e^{-2\pi i u x} dx$$

Define the inverse Fourier transform

$$f_{\infty}(x) = \int_{\mathbb{R}} \widehat{f}_{\infty}(u) \overline{\chi_{\infty,u}(x)} \mathrm{d}u = \int_{\mathbb{R}} \widehat{f}_{\infty}(u) e^{2\pi i u x} \mathrm{d}u$$

Example (Gaussian Function)

Let $f_{\infty}(x) = e^{-cx^2}$ be the Gaussian function. Then

$$\widehat{f}_{\infty}(u) = \int_{\mathbb{R}} f_{\infty}(x) \chi_{\infty,u}(x) dx = \int_{\mathbb{R}} e^{-cx^2} e^{-2\pi i u x} dx$$

$$= \int_{\mathbb{R}} e^{-cx^2} \cos(2\pi u x) dx - i \int_{\mathbb{R}} e^{-cx^2} \sin(2\pi u x) dx$$

$$= \int_{\mathbb{R}} e^{-cx^2} \cos(2\pi u x) dx = \sqrt{\frac{\pi}{c}} e^{-\frac{\pi^2 u^2}{c}}$$

Hence the Gaussian function $f_{\infty}(x) = e^{-\pi x^2}$ is Fourier self-dual, $\widehat{f}_{\infty} = f_{\infty}$.

Fix the Haar measure $\mathrm{d}^\times x$ on \mathbb{R}^\times . We have $\mathrm{d}^\times x = \frac{\mathrm{d} x}{|x|}$.

Example

(Local factor $\zeta_{\infty}(s)=\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$) Let $f_{\infty}(x)=e^{-\pi x^2}$ be the **Gaussian function**. Then $\widehat{f}_{\infty}=f_{\infty}$, and we have

$$Z_{f_{\infty}}(s) = \int_{\mathbb{R}^{\times}} |x|^{s} f_{\infty}(x) d^{\times}x = \int_{\mathbb{R}} |x|^{s-1} f_{\infty}(x) dx = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$

Fix the Haar measure $d^{\times}x$ on \mathbb{R}^{\times} . We have $d^{\times}x = \frac{dx}{|x|}$.

Example

(Local factor $\zeta_{\infty}(s)=\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})$) Let $f_{\infty}(x)=e^{-\pi x^2}$ be the **Gaussian function**. Then $\widehat{f}_{\infty}=f_{\infty}$, and we have

$$Z_{f_{\infty}}(s) = \int_{\mathbb{R}^{\times}} |x|^{s} f_{\infty}(x) d^{\times}x = \int_{\mathbb{R}} |x|^{s-1} f_{\infty}(x) dx = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$$

For this use the integral definition of the Gamma function

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \mathrm{d}x$$

so indeed $Z_{f_{\infty}}(s) = \zeta_{\infty}(s)$.

Example (Bessel Function)

Consider the modified Bessel functions

$$I_s(x) = \sum_{n \geq 0} \frac{1}{n!\Gamma(n+s+1)} \left(\frac{x}{2}\right)^{2n+s} \qquad K_s(x) = \frac{\pi}{2} \frac{I_{-s}(x) - I_s(x)}{\sin(sx)}$$

 $I_s(x)$ and $K_s(x)$ are the two linearly independent solutions to the modified Bessel equation

$$x^{2} \frac{\mathrm{d}^{2} f_{s}}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}f_{s}}{\mathrm{d}x} - (x^{2} + s^{2}) f_{s} = 0$$

The modified **Bessel function** $K_s(x)$ can be written as an inverse Fourier transform of $||(1,u)||^{-2s} = (1+u^2)^{-s}$ by

$$\int_{\mathbb{R}} (1+u^2)^{-s} e^{-2\pi i u x} \mathrm{d} u = \frac{2\pi^s}{\Gamma(s)} |x|^{s-\frac{1}{2}} K_{s-\frac{1}{2}}(2\pi |x|)$$

Fix a Haar measure $\mathrm{d}x$ on \mathbb{Q}_p normalized so that $\int_{\mathbb{Z}_p} \mathrm{d}x = 1$. We use the decompositions $\mathbb{Z}_p = \coprod_{0 \leq k \leq p-1} Z_k$ where $Z_k = \{x \in \mathbb{Z}_p \mid x = k + \mathrm{O}(p)\}$, and $\mathbb{Z}_p = \coprod_{k \geq 0} p^k \mathbb{Z}_p^{\times}$. Example

$$\int_{\mathbb{Z}_p^\times} \mathrm{d} x = \frac{p-1}{p}$$

Fix a Haar measure $\mathrm{d}x$ on \mathbb{Q}_p normalized so that $\int_{\mathbb{Z}_p} \mathrm{d}x = 1$. We use the decompositions $\mathbb{Z}_p = \coprod_{0 \leq k \leq p-1} Z_k$ where $Z_k = \{x \in \mathbb{Z}_p \mid x = k + \mathrm{O}(p)\}$, and $\mathbb{Z}_p = \coprod_{k \geq 0} p^k \mathbb{Z}_p^{\times}$.

Example

$$\int_{\mathbb{Z}_p^{\times}} \mathrm{d}x = \frac{p-1}{p}$$

For this use $\mathbb{Z}_p = \coprod_{0 \le k \le p-1} Z_k$ so

$$\int_{\mathbb{Z}_p^{\times}} \mathrm{d}x = \sum_{1 \le k \le p-1} \int_{Z_k} \mathrm{d}x = \sum_{1 \le k \le p-1} \frac{1}{p} = \frac{p-1}{p}$$

Example

$$\int_{\mathbb{Z}_p} |x|_p^s dx = \frac{p-1}{p} \frac{1}{1-p^{-s-1}} \qquad \Re(s) > -1$$

Example

$$\int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}x = \frac{p-1}{p} \frac{1}{1-p^{-s-1}} \qquad \Re(s) > -1$$

For this use $\mathbb{Z}_p = \coprod_{k \geq 0} p^k \mathbb{Z}_p^{\times}$ and change variables $x = p^k u$ so

$$\begin{split} & \int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}x = \sum_{k \geq 0} \int_{p^k \mathbb{Z}_p^\times} |x|_p^s \mathrm{d}x = \sum_{k \geq 0} p^{-ks} \int_{p^k \mathbb{Z}_p^\times} \mathrm{d}x \\ & = \sum_{k > 0} p^{-ks} \int_{\mathbb{Z}_p^\times} p^{-k} \mathrm{d}u = \frac{p-1}{p} \sum_{k > 0} p^{-k(s+1)} = \frac{p-1}{p} \frac{1}{1-p^{-s-1}} \end{split}$$

which converges for $\Re(s) > -1$.

Example

$$\int_{\mathbb{Q}_p-\mathbb{Z}_p}|x|_p^s\mathrm{d}x=\frac{p-1}{p}\frac{p^{s+1}}{1-p^{s+1}}\qquad\Re(s)<-1$$

Example

$$\int_{\mathbb{Q}_p - \mathbb{Z}_p} |x|_p^s \mathrm{d}x = \frac{p-1}{p} \frac{p^{s+1}}{1 - p^{s+1}} \qquad \Re(s) < -1$$

For this we use $\mathbb{Q}_p - \mathbb{Z}_p = \coprod_{k \geq 1} p^{-k} \mathbb{Z}_p^{\times}$ so

$$\int_{\mathbb{Q}_p - \mathbb{Z}_p} |x|_p^s dx = \sum_{k \ge 1} p^{ks} \int_{p^{-k} \mathbb{Z}_p^{\times}} dx = \sum_{k \ge 1} p^{k(s+1)} \int_{\mathbb{Z}_p^{\times}} dx$$
$$= \frac{p-1}{p} \sum_{k \ge 1} p^{k(s+1)} = \frac{p-1}{p} \frac{p^{s+1}}{1 - p^{s+1}}$$

which converges for $\Re(s) < -1$. Note that the same integral over \mathbb{Q}_p does not exist!

For $x \in \mathbb{Q}_p$ let $[x]_p$ denote the fractional part of x, that is

$$[x_k p^k + \ldots + x_{-1} p^{-1} + x_0 p^0 + x_1 p^1 + \ldots]_p = \begin{cases} x_k p^k + \ldots + x_{-1} p^{-1} & k \le 0 \\ 0 & \text{otherwise} \end{cases}$$

Note that for $x \in \mathbb{Q}$, $x - \sum_{p} [x]_{p} \in \mathbb{Z}$.

For $x \in \mathbb{Q}_p$ let $[x]_p$ denote the fractional part of x, that is

$$[x_k p^k + \ldots + x_{-1} p^{-1} + x_0 p^0 + x_1 p^1 + \ldots]_p = \begin{cases} x_k p^k + \ldots + x_{-1} p^{-1} & k \le 0 \\ 0 & \text{otherwise} \end{cases}$$

Note that for $x \in \mathbb{Q}$, $x - \sum_{p} [x]_p \in \mathbb{Z}$.

For $u \in \mathbb{Q}_p$ consider the additive character $\chi_{p,u} : \mathbb{Q}_p \to \mathrm{U}(1)$ given for $x \in \mathbb{Q}_p$ by $\chi_{p,u}(x) = e^{-2\pi i [ux]_p}$. The **conductor** of $\chi_{p,u}$ is the kernel $|u|_p \mathbb{Z}_p \subseteq \mathbb{Q}_p$. Then $\chi_{p,u}(x)$ is additive in $u, x \in \mathbb{Q}_p$ and satisfies $\chi_{p,u}(x) = \chi_{p,u}(x) = \chi_{p,u}(-x)$.

Example

$$\int_{p^k \mathbb{Z}_p} \chi_{p,u}(x) \mathrm{d}x = \int_{p^k \mathbb{Z}_p} e^{-2\pi i [ux]_p} \mathrm{d}x = p^{-k} \gamma_p(up^k) \qquad k \in \mathbb{Z}$$

where $\gamma_p(x)$ is the **p-adic Gaussian** defined by

$$\gamma_{p}(u) = \int_{\mathbb{Z}_{p}} \chi_{p,u}(x) dx = \int_{\mathbb{Z}_{p}} e^{-2\pi i [ux]_{p}} dx = \begin{cases} 1 & u \in \mathbb{Z}_{p} \\ 0 & u \notin \mathbb{Z}_{p} \end{cases}$$

Example

$$\int_{p^k \mathbb{Z}_p} \chi_{p,u}(x) \mathrm{d}x = \int_{p^k \mathbb{Z}_p} e^{-2\pi i [ux]_p} \mathrm{d}x = p^{-k} \gamma_p(up^k) \qquad k \in \mathbb{Z}$$

where $\gamma_p(x)$ is the **p-adic Gaussian** defined by

$$\gamma_{p}(u) = \int_{\mathbb{Z}_{p}} \chi_{p,u}(x) dx = \int_{\mathbb{Z}_{p}} e^{-2\pi i [ux]_{p}} dx = \begin{cases} 1 & u \in \mathbb{Z}_{p} \\ 0 & u \notin \mathbb{Z}_{p} \end{cases}$$

For k=0 the integral depends only on the conductor $|u|_p\mathbb{Z}_p$. For $k\neq 0$ we change variables so

$$\int_{p^k\mathbb{Z}_p}\chi_{p,u}(x)\mathrm{d}x=\int_{p^k\mathbb{Z}_p}e^{-2\pi i[ux]_p}\mathrm{d}x=p^{-k}\int_{\mathbb{Z}_p}e^{-2\pi i[up^kx]_p}\mathrm{d}x=p^{-k}\gamma_p(up^k)$$

Example

$$\int_{p^{k}\mathbb{Z}_{p}^{\times}} \chi_{p,u}(x) dx = \int_{p^{k}\mathbb{Z}_{p}^{\times}} e^{-2\pi i [ux]_{p}} dx = \begin{cases} \frac{p-1}{p} p^{-k} & |u|_{p} \leq p^{k} \\ -p^{-(k+1)} & |u|_{p} = p^{k+1} \end{cases} \qquad k \in \mathbb{Z}$$

$$0 \qquad |u|_{p} > p^{k+1}$$

Example

$$\int_{p^k \mathbb{Z}_p^{\times}} \chi_{p,u}(x) dx = \int_{p^k \mathbb{Z}_p^{\times}} e^{-2\pi i [ux]_p} dx = \begin{cases} \frac{p-1}{p} p^{-k} & |u|_p \le p^k \\ -p^{-(k+1)} & |u|_p = p^{k+1} \\ 0 & |u|_p > p^{k+1} \end{cases} \quad k \in \mathbb{Z}$$

For k=0 we use $\mathbb{Z}_p^{ imes}=\mathbb{Z}_p-p\mathbb{Z}_p$ so

$$\begin{split} & \int_{\mathbb{Z}_p^\times} \chi_{p,u}(x) \mathrm{d}x = \int_{\mathbb{Z}_p^\times} e^{-2\pi i [ux]_p} \mathrm{d}x = \int_{\mathbb{Z}_p} e^{-2\pi i [ux]_p} \mathrm{d}x - \int_{p\mathbb{Z}_p} e^{-2\pi i [ux]_p} \mathrm{d}x \\ & = \gamma_p(u) - p^{-1} \int_{\mathbb{Z}_p} e^{-2\pi i [upx]_p} \mathrm{d}x = \gamma_p(u) - p^{-1} \gamma_p(up) = \begin{cases} \frac{p-1}{p} & |u|_p \le 1 \\ -p^{-1} & |u|_p = p \\ 0 & |u|_p > p \end{cases} \end{split}$$

For $k \neq 0$ we change variables so

$$\begin{split} & \int_{p^k \mathbb{Z}_p^\times} \chi_{p,u}(x) \mathrm{d}x = \int_{p^k \mathbb{Z}_p^\times} e^{-2\pi i [ux]_p} \mathrm{d}x = p^{-k} \int_{\mathbb{Z}_p^\times} e^{-2\pi i [up^k x]_p} \mathrm{d}x \\ & = p^{-k} \gamma_p(up^k) - p^{-(k+1)} \gamma_p(up^{k+1}) = \begin{cases} \frac{p-1}{p} p^{-k} & |u|_p \le p^k \\ -p^{-(k+1)} & |u|_p = p^{k+1} \\ 0 & |u|_p > p^{k+1} \end{cases} \end{split}$$

Let $\mathcal{S}(\mathbb{Q}_p)$ denote the space of Bruhat-Schwartz functions on \mathbb{Q}_p : the \mathbb{C} -vector space of compactly supported locally constant functions $f:\mathbb{Q}_p\to\mathbb{C}$.

The field \mathbb{Q}_p is a locally compact Abelian group which is **Pontryagin self-dual**, $\widehat{\mathbb{Q}}_p = \mathbb{Q}_p$.

Let $\mathcal{S}(\mathbb{Q}_p)$ denote the space of Bruhat-Schwartz functions on \mathbb{Q}_p : the \mathbb{C} -vector space of compactly supported locally constant functions $f:\mathbb{Q}_p\to\mathbb{C}$.

The field \mathbb{Q}_p is a locally compact Abelian group which is **Pontryagin self-dual**, $\widehat{\mathbb{Q}}_p = \mathbb{Q}_p$.

Definition

For $f_p \in \mathcal{S}(\mathbb{Q}_p)$ define the Fourier transform

$$\widehat{f}_p(u) = \int_{\mathbb{Q}_p} f_p(x) \chi_{p,u}(x) dx = \int_{\mathbb{Q}_p} f_p(x) e^{-2\pi i [ux]_p} dx$$

Define the inverse Fourier transform

$$f_p(x) = \int_{\mathbb{Q}_p} \widehat{f}_p(u) \overline{\chi_{p,u}(x)} \mathrm{d}u = \int_{\mathbb{Q}_p} \widehat{f}_p(u) e^{2\pi i [ux]_p} \mathrm{d}u$$

Recall by a previous example,

$$\int_{p^k \mathbb{Z}_p} \chi_{p,u}(x) dx = \int_{p^k \mathbb{Z}_p} e^{-2\pi i [ux]_p} dx = p^{-k} \gamma_p(up^k) \qquad k \in \mathbb{Z}$$

Example (p-adic Gaussian Function)

Let $f_p(x) = \gamma_p(x)$ be the **p-adic Gaussian function**. Then

$$\widehat{f}_{p}(u) = \int_{\mathbb{Q}_{p}} f_{p}(x) \chi_{p,u}(x) dx = \int_{\mathbb{Z}_{p}} \chi_{p,u}(x) dx$$
$$= \int_{\mathbb{Z}_{p}} e^{-2\pi i [ux]_{p}} dx = f_{p}(u)$$

by a previous example. Hence the **p-adic Gaussian function** $f_p(x) = \gamma_p(x)$ is **Fourier self-dual**, $\widehat{f_p} = f_p$.

Example

$$\int_{\mathbb{Q}_p - \mathbb{Z}_p} |x|_p^s \chi_{p,u}(x) dx = \gamma_p(u) \Big((1 - p^s) \frac{1 - p^{s+1} |u|_p^{-s-1}}{1 - p^{s+1}} - 1 \Big)$$

Example

$$\int_{\mathbb{Q}_{p}-\mathbb{Z}_{p}} |x|_{p}^{s} \chi_{p,u}(x) dx = \gamma_{p}(u) \Big((1-p^{s}) \frac{1-p^{s+1}|u|_{p}^{-s-1}}{1-p^{s+1}} - 1 \Big)$$

The integral depends only on the conductor $|u|_p\mathbb{Z}_p$. If $u\in\mathbb{Z}_p$ with conductor p^k for $k\geq 0$ we have

$$\begin{split} &\int_{\mathbb{Q}_{p}-\mathbb{Z}_{p}}|x|_{p}^{s}\chi_{p,u}(x)\mathrm{d}x = \int_{\mathbb{Q}_{p}-\mathbb{Z}_{p}}|x|_{p}^{s}\mathrm{e}^{-2\pi i[p^{k}x]_{p}}\mathrm{d}x = \sum_{\ell\geq 1}p^{s\ell}\int_{p^{-\ell}\mathbb{Z}_{p}^{\times}}\mathrm{e}^{-2\pi i[p^{k}x]_{p}}\mathrm{d}x \\ &=\sum_{\ell\geq 1}p^{(s+1)\ell}\int_{\mathbb{Z}_{p}^{\times}}\mathrm{e}^{-2\pi i[p^{k-\ell}x]_{p}}\mathrm{d}x = \frac{p-1}{p}\sum_{1\leq \ell\leq k}p^{(s+1)\ell} - \frac{1}{p}p^{(k+1)(s+1)} \\ &= (1-p^{s})\frac{1-p^{s+1}|u|_{p}^{-s-1}}{1-p^{s+1}} - 1 \end{split}$$

If $u \notin \mathbb{Z}_p$ with conductor p^k for k < 0 the above integral vanishes.

Fix a Haar measure $d^{\times}x$ on \mathbb{Q}_{p}^{\times} normalized so that $\int_{\mathbb{Z}_{p}^{\times}} d^{\times}x = 1$. We have $d^{\times}x = \frac{p}{p-1}\frac{dx}{|x|_{*}}$.

Example

(Local factor $\zeta_p(s)=\frac{1}{1-p^{-s}}$) Let $f_p(x)=\gamma_p(x)$ be the **p-adic** Gaussian function. Then $\widehat{f_p}=f_p$ and we have

$$Z_{f_p}(s) = \int_{\mathbb{Q}_p} |x|_p^s f_p(x) \mathrm{d}^{\times} x = \int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}^{\times} x = \frac{1}{1 - p^{-s}} \qquad s \neq 0$$

Fix a Haar measure $\mathrm{d}^\times x$ on \mathbb{Q}_p^\times normalized so that $\int_{\mathbb{Z}_p^\times} \mathrm{d}^\times x = 1$. We have $\mathrm{d}^\times x = \frac{p}{p-1} \frac{\mathrm{d} x}{|x|}$.

Example

(Local factor $\zeta_p(s)=\frac{1}{1-p^{-s}}$) Let $f_p(x)=\gamma_p(x)$ be the **p-adic** Gaussian function. Then $\widehat{f_p}=f_p$ and we have

$$Z_{f_p}(s) = \int_{\mathbb{Q}_p} |x|_p^s f_p(x) \mathrm{d}^{\times} x = \int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}^{\times} x = \frac{1}{1 - p^{-s}} \qquad s \neq 0$$

For this we use $\mathbb{Z}_p = \coprod_{k \geq 0} p^k \mathbb{Z}_p^{\times}$ so

$$\int_{\mathbb{Z}_p} |x|_p^s \mathrm{d}^{\times} x = \sum_{k > 0} p^{-ks} \int_{\mathbb{Z}_p^{\times}} \mathrm{d}^{\times} x = \sum_{k > 0} p^{-ks} = \frac{1}{1 - p^{-s}} \qquad s \neq 0$$

Example (p-adic Bessel Function)

The modified **p-adic Bessel function** $K_{p,s}(x)$ can be written as an inverse Fourier transform of $||(1,u)||^{-2s} = \max(1,|u|_p)^{-2s}$, normalized by $\frac{1}{1-p^{-2s}}$ by

$$\frac{1}{1-p^{-2s}} \int_{\mathbb{Q}_p} \max(1,|u|_p)^{-2s} e^{2\pi i [ux]_p} du = \gamma_p(x) \frac{1-p^{-2s+1} |x|_p^{2s-1}}{1-p^{-2s+1}}$$

Example (p-adic Bessel Function)

The modified **p-adic Bessel function** $K_{p,s}(x)$ can be written as an inverse Fourier transform of $||(1,u)||^{-2s} = \max(1,|u|_p)^{-2s}$, normalized by $\frac{1}{1-p^{-2s}}$ by

$$\frac{1}{1-p^{-2s}} \int_{\mathbb{Q}_p} \max(1, |u|_p)^{-2s} e^{2\pi i [ux]_p} du = \gamma_p(x) \frac{1-p^{-2s+1} |x|_p^{2s-1}}{1-p^{-2s+1}}$$

By previous examples,

$$\begin{split} &\frac{1}{1-\rho^{-2s}}\int_{\mathbb{Q}_p} \max(1,|u|_p)^{-2s} \mathrm{e}^{2\pi i [ux]_p} \mathrm{d}u \\ &= \frac{1}{1-\rho^{-2s}}\int_{\mathbb{Z}_p} \mathrm{e}^{2\pi i [ux]_p} \mathrm{d}u + \frac{1}{1-\rho^{-2s}}\int_{\mathbb{Q}_p - \mathbb{Z}_p} |u|_p^{-2s} \mathrm{e}^{2\pi i [ux]_p} \mathrm{d}u \\ &= \frac{\gamma_p(x)}{1-\rho^{-2s}} + \frac{\gamma_p(x)}{1-\rho^{-2s}} \Big((1-\rho^{-2s}) \frac{1-\rho^{-2s+1}|u|_p^{2s-1}}{1-\rho^{-2s+1}} - 1 \Big) = \gamma_p(x) \frac{1-\rho^{-2s+1}|x|_p^{2s-1}}{1-\rho^{-2s+1}} \end{split}$$

Fourier Theory over $\mathbb{A}_{\mathbb{Q}}$

Let $\mathcal{S}(\mathbb{A}_{\mathbb{Q}})$ denote the space of Bruhat-Schwarz functions on $\mathbb{A}_{\mathbb{Q}}$: the \mathbb{C} -vector space of finite \mathbb{C} -linear combinations of monomial Schwartz functions $f: \mathbb{A}_{\mathbb{Q}} \to \mathbb{C}$, namely $f(x) = \prod_{v} f_v(x_v)$ for $f_v = \gamma_p$ for all but finitely many finite places v of \mathbb{Q} .

Fourier Theory over $\mathbb{A}_{\mathbb{Q}}$

Let $\mathcal{S}(\mathbb{A}_{\mathbb{Q}})$ denote the space of Bruhat-Schwarz functions on $\mathbb{A}_{\mathbb{Q}}$: the \mathbb{C} -vector space of finite \mathbb{C} -linear combinations of monomial Schwartz functions $f: \mathbb{A}_{\mathbb{Q}} \to \mathbb{C}$, namely $f(x) = \prod_{\nu} f_{\nu}(x_{\nu})$ for $f_{\nu} = \gamma_{p}$ for all but finitely many finite places ν of \mathbb{Q} .

Definition

For $f \in \mathcal{S}(\mathbb{A}_{\mathbb{Q}})$ define the Fourier transform

$$\widehat{f}(u) = \int_{\mathbb{A}_{\mathbb{Q}}} f(x) \chi_u(x) dx = \int_{\mathbb{A}_{\mathbb{Q}}} f(x) e^{-2\pi i [ux]} dx$$

Define the inverse Fourier transform

$$f(x) = \int_{\mathbb{A}_{\mathbb{Q}}} \widehat{f}(u) \overline{\chi_u(x)} \mathrm{d}u = \int_{\mathbb{A}_{\mathbb{Q}}} \widehat{f}(u) e^{2\pi i [ux]} \mathrm{d}u$$

For $f = \prod_{v} f_{v}$ a monomial Schwartz function we have $\widehat{f} = \prod_{v} \widehat{f}_{v}$.

Definition

For $f \in \mathcal{S}(\mathbb{A}_\mathbb{Q})$ define the global zeta integral

$$Z_f(s) = \int_{\mathbb{I}_{\mathbb{Q}}} |x|^s f(x) \mathrm{d}^{\times} x$$

For $f=\prod_{v}f_{v}$ a monomial Schwartz function we have $Z_{f}(s)=\prod_{v}Z_{f_{v}}(s)$ for $\Re(s)>1$.

Definition

For $f \in \mathcal{S}(\mathbb{A}_\mathbb{Q})$ define the global zeta integral

$$Z_f(s) = \int_{\mathbb{I}_{\mathbb{Q}}} |x|^s f(x) \mathrm{d}^{\times} x$$

For $f = \prod_{\nu} f_{\nu}$ a monomial Schwartz function we have $Z_f(s) = \prod_{\nu} Z_{f_{\nu}}(s)$ for $\Re(s) > 1$.

Example (Completed Riemann Zeta Function)

Let $f = \prod_{\mathbf{v}} \gamma_{\mathbf{v}}$ be the **global Gaussian function**. Then $\widehat{f} = f$, and

$$Z_f(s) = \prod_{\nu} Z_{f_{\nu}}(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \prod_{p} \frac{1}{1 - p^{-s}}$$

so indeed $Z_f(s) = Z(s)$.

Example (Non-Holomorphic Eisenstein Series)

The non-holomorphic Eisenstein series $E_s(z)$ has Fourier expansion $E_s(z) = \sum_{n \in \mathbb{Z}} E_s(y)_n e^{2\pi i n x}$. Its coefficients are given

$$E_s(z) = y^s + \frac{Z(2s-1)}{Z(2s)}y^{1-s} + \sum_{n \in \mathbb{Z}} \frac{2}{Z(2s)} |n|^{s-\frac{1}{2}} y^{\frac{1}{2}} K_{s-\frac{1}{2}} (2\pi |n| y) \sigma_{1-2s}(n) e^{2\pi i n x}$$

Example (Non-Holomorphic Eisenstein Series)

The non-holomorphic Eisenstein series $E_s(z)$ has Fourier expansion $E_s(z) = \sum_{n \in \mathbb{Z}} E_s(y)_n e^{2\pi i n x}$. Its coefficients are given

$$E_s(z) = y^s + \frac{Z(2s-1)}{Z(2s)}y^{1-s} + \sum_{n \in \mathbb{Z}} \frac{2}{Z(2s)} |n|^{s-\frac{1}{2}} y^{\frac{1}{2}} K_{s-\frac{1}{2}} (2\pi |n| y) \sigma_{1-2s}(n) e^{2\pi i n x}$$

The $\frac{2}{Z(2s)}|n|^{s-\frac{1}{2}}y^{\frac{1}{2}}K_{s-\frac{1}{2}}(2\pi|n|y)=\frac{1}{\zeta(2s)}\frac{2\pi^s}{\Gamma(s)}|n|^{s-\frac{1}{2}}y^{\frac{1}{2}}K_{s-\frac{1}{2}}(2\pi|n|y)$ is coming from the **Bessel function**. The generalized divisor sum $\sigma_{1-2s}(n)$ is coming from the **p-adic Bessel functions**:

$$\prod_{p} \left(\gamma_p(x) \frac{1 - p^{-2s+1} |n|_p^{2s-1}}{1 - p^{-2s+1}} \right) = \sum_{d \mid p} d^{1-2s} = \sigma_{1-2s}(n)$$

Indeed $E_s(z)$ can be viewed as a certain integral over $\mathbb{A}_{\mathbb{Q}}$.