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1 Strategy

We prove the fundamental theorem of algebra, using only elementary techniques
from calculus, point-set topology, and linear algebra; this proof apparently does
not appear in the extensive literature on the subject [1], [2]. The exposition is
essentially self-contained.

Theorem 1 (Fundamental Theorem of Algebra). Every non-constant polyno-
mial with complex coefficients has a root in C.

This is the strategy of the proof. Let Xn ' Cn be the space of degree n
monic polynomials with complex coefficients, via the identification (a1, ..., an) 7→
zn +

∑n
i=1 aiz

i. Let D ⊂ Xn be the zero locus of the discriminant, and let
R ⊂ Xn \ D be the set of polynomials with non-zero discriminant which have
at least one complex root. We show:

1. Xn \D, the set of monic degree n polynomials with non-zero discriminant,
is connected.

2. R, the set of monic degree n polynomials with non-zero discriminant which
have at least one root, is both open and closed in Xn\D. As R is nonempty
it is thus equal to Xn \D, so every monic degree n polynomial with non-
zero discriminant has a root.

3. By induction on n, every polynomial with zero discriminant has a root.

2 Preliminaries

The following preliminary lemma is the only part of the argument that uses
that the ground field is C, rather than R.

Lemma 1. Let V ⊂ Cn be the zero locus of some polynomial p(x) = p(x1, ..., xn).
Then Cn \ V is path-connected, and thus connected.
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Proof. Let y, z ∈ Cn\V be two points in the complement of V . Consider the set
S = {cy + (1− c)z | c ∈ C} ⊂ Cn, which is a complex line connecting y and z.
Then S∩V is a finite set, as p(cy+(1−c)z) is a polynomial in the single complex
variable c, and thus has at most finitely many zeros. In particular, S \ (S∩V ) is
homeomorphic to the complex plane with finitely many points removed, and so
is path connected. Thus there is a path in S \ (S ∩ V ) connecting y and z.

We will also need an easy lemma bounding the size of the roots of a monic
polynomial in terms of its coefficients.

Lemma 2. Let {fα} be a set of monic degree n polynomials whose coefficients
all lie in some bounded region of C. Then there exists C > 0 such that if z is a
zero of fα for some α, then |z| < C.

Proof. This is immediate from the fact that

fα(z)

zn
→ 1 as |z| → ∞

uniformly in α.

Finally, we introduce the resultant and discriminant. Let k be a field and
let f, g ∈ k[x] be non-constant polynomials with coefficients in k. Then there is
a map

ψf,g : k[x]/(f)⊕ k[x]/(g)→ k[x]/(fg)

given by
(a+ (f), b+ (g)) 7→ ag + bf + (fg).

By the chinese remainder theorem, this map is a k-vector space isomorphism if
and only if gcd(f, g) = 1. Define the resultant

Rf,g = det(ψf,g).

Note that by the previous remark, Rf,g = 0 if and only if f, g have a common
factor. Taking k = C(a0, a1, ..., an, b0, b1, ..., bm) with

f(x) = anx
n + an−1x

n−1 + · · ·+ a0, g(x) = bmx
m + bm−1x

m−1 + · · ·+ b0

and choosing bases for k[x]/(f), k[x]/(g), k[x]/(fg) gives a formula for Rf,g as a
polynomial in the coefficients of f, g for general polynomials f, g with complex
coefficients.

Now let f be any polynomial of degree at least 2 with complex coefficients,
and define the discriminant Df = Rf,f ′ , where f ′ is the derivative of f . Note
that Df is a polynomial in the coefficients of f . Furthermore, Df = 0 if and
only if f has a factor in common with its derivative.
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3 The Proof

We now prove the fundamental theorem of algebra (Theorem 1).
Let Xn ' Cn be the space of degree n monic polynomials with complex

coefficients, via the identification (a1, ..., an) 7→ zn +
∑n
i=1 aiz

i; we endow Xn

with the analytic topology. Let D ⊂ Xn, D := {f ∈ Xn | Df = 0} be the set
of polynomials f with discriminant 0. Namely, D consists of those polynomials
which have a factor in common with their derivative. Note that D is a closed
subset of Xn, as it is the zero set of a polynomial. Define R ⊂ Xn \D, by

R = {f ∈ Xn \D | ∃z ∈ C such that f(z) = 0}.

That is, R consists of those polynomials, with non-zero discriminant, which have
a root in C. Note that R is non-empty; for example, it contains zn − 1.

We claim that R is open in Xn \D, in the subspace topology. To see this,
let ev : C× (Xn \D)→ C be the evaluation map (z, p) 7→ p(z). Consider f ∈ R;
by definition, f has a root t, so ev(t, f) = 0. Furthermore, ( ddt ev)(t, f) = f ′(t)
is non-zero, as otherwise (z− t) divides both f and f ′, and thus Df = 0, which
contradicts the fact that f 6∈ D.

Thus, by the implicit function theorem, there exists an open neighborhood
U ⊂ Xn \ D with f ∈ U , and a function r : U → C such that r(f) = t and
g(r(g)) = ev(r(g), g) = 0 for all g ∈ U . That is, we have found a neighborhood U
of f and a function on U parametrizing roots of polynomials in U ; in particular,
all of the polynomials in U have a root. Thus U ⊂ R, and so R is open.

Now, we claim R is closed in Xn \D. Let fk → f in Xn \D, with fk ∈ R
for all k; we wish to show that f has a root in C. As each fk ∈ R, there exists
zk ∈ C with fk(zk) = 0. By Lemma 2, the zk are bounded, and so there exists
a convergent subsequence zαk

→ z. So replacing {fj}, {zj} by subsequences, we
may assume zj → z. We claim f(z) = 0, and thus f ∈ R. Indeed, we have

|f(z)− fk(zj)| ≤ |f(z)− f(zj)|+ |f(zj)− fk(zj)|. (∗)

Taking j, k large, we may make the right hand side of (∗) arbitrarily small, by
the continuity of f and the fact that the fk converge to f pointwise. Now taking
j = k large, fk(zj) = 0, so we may make |f(z)| arbitrarily small. Thus f(z) = 0
as desired.

So R is both open and closed in Xn \ D. But by Lemma 1, Xn \ D is
connected, so R = Xn \ D. In particular, every polynomial of degree n with
non-zero discriminant has a root.

It remains only to show that those degree n polynomials f with zero dis-
criminant have a root. But such polynomials f have a factor g in common with
their derivatives f ′. The degree of g is less than that of f , and so we are done
by induction on n, as the degree 1 case is trivial.
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