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1 Strategy

We prove the fundamental theorem of algebra, using only elementary techniques
from calculus, point-set topology, and linear algebra; this proof apparently does
not appear in the extensive literature on the subject [1], [2]. The exposition is
essentially self-contained.

Theorem 1 (Fundamental Theorem of Algebra). Every non-constant polyno-
mial with complex coefficients has a root in C.

This is the strategy of the proof. Let X,, ~ C™ be the space of degree n
monic polynomials with complex coefficients, via the identification (a1, ..., a,)
Z" + Z?zl a;7'. Let D C X, be the zero locus of the discriminant, and let
R C X,, \ D be the set of polynomials with non-zero discriminant which have
at least one complex root. We show:

1. X, \ D, the set of monic degree n polynomials with non-zero discriminant,
is connected.

2. R, the set of monic degree n polynomials with non-zero discriminant which
have at least one root, is both open and closed in X,,\ D. As R is nonempty
it is thus equal to X,, \ D, so every monic degree n polynomial with non-
zero discriminant has a root.

3. By induction on n, every polynomial with zero discriminant has a root.

2 Preliminaries

The following preliminary lemma is the only part of the argument that uses
that the ground field is C, rather than R.

Lemma 1. Let V' C C™ be the zero locus of some polynomial p(x) = p(x1, ..., Zn)-
Then C™\ 'V is path-connected, and thus connected.



Proof. Let y,z € C™\ 'V be two points in the complement of V. Consider the set
S={cy+(1—-c)z|ceC}cC" which is a complex line connecting y and z.
Then SNV is a finite set, as p(cy+ (1—c¢)z) is a polynomial in the single complex
variable ¢, and thus has at most finitely many zeros. In particular, S\ (SNV) is
homeomorphic to the complex plane with finitely many points removed, and so
is path connected. Thus there is a path in S\ (SN V) connecting y and z. O

We will also need an easy lemma bounding the size of the roots of a monic
polynomial in terms of its coeflicients.

Lemma 2. Let {f,} be a set of monic degree n polynomials whose coefficients
all lie in some bounded region of C. Then there exists C' > 0 such that if z is a
zero of fo for some «, then |z| < C.

Proof. This is immediate from the fact that

Z’ﬂ

—1las|z| = o0

uniformly in a. O

Finally, we introduce the resultant and discriminant. Let k be a field and
let f, g € k[z] be non-constant polynomials with coefficients in k. Then there is
a map

Urg : k[z]/(f) ® K[z]/(9) = klz]/(f9g)
given by
(a4 (f):b+(9)) = ag+bf + (fg).

By the chinese remainder theorem, this map is a k-vector space isomorphism if
and only if ged(f, g) = 1. Define the resultant

Ry g = det(vy ).

Note that by the previous remark, R¢, = 0 if and only if f, g have a common
factor. Taking k = C(ag, a1, ..., Gn, bo, b1, ..., by ) With

f(@) = an2™ +an_12" "+ +ag, g(x) = bpa™ + by_12™ 4+ by

and choosing bases for k[z]/(f), k[x]/(g), k[z]/(fg) gives a formula for Ry, as a
polynomial in the coefficients of f, g for general polynomials f, g with complex
coefficients.

Now let f be any polynomial of degree at least 2 with complex coeflicients,
and define the discriminant Dy = Ry j/, where f’ is the derivative of f. Note
that Dy is a polynomial in the coefficients of f. Furthermore, Dy = 0 if and
only if f has a factor in common with its derivative.



3 The Proof

We now prove the fundamental theorem of algebra (Theorem 1).

Let X,, >~ C™ be the space of degree n monic polynomials with complex
coefficients, via the identification (a1, ...,a,) — 2™ + Y i, a;z"; we endow X,
with the analytic topology. Let D C X,,,D := {f € X,, | Dy = 0} be the set
of polynomials f with discriminant 0. Namely, D consists of those polynomials
which have a factor in common with their derivative. Note that D is a closed
subset of X, as it is the zero set of a polynomial. Define R C X,, \ D, by

R={f€ X, \D]|3z e Csuch that f(z) = 0}.

That is, R consists of those polynomials, with non-zero discriminant, which have
a root in C. Note that R is non-empty; for example, it contains 2™ — 1.

We claim that R is open in X, \ D, in the subspace topology. To see this,
let ev : Cx (X, \ D) — C be the evaluation map (z,p) — p(z). Consider f € R;
by definition, f has a root t, so ev(t, f) = 0. Furthermore, (4 ev)(t, f) = f'(t)
is non-zero, as otherwise (z — t) divides both f and f’, and thus Dy = 0, which
contradicts the fact that f ¢ D.

Thus, by the implicit function theorem, there exists an open neighborhood
U cC X, \ D with f € U, and a function r : U — C such that r(f) = ¢ and
g(r(g)) =ev(r(g),g) = 0for all g € U. That is, we have found a neighborhood U
of f and a function on U parametrizing roots of polynomials in U; in particular,
all of the polynomials in U have a root. Thus U C R, and so R is open.

Now, we claim R is closed in X, \ D. Let fi — f in X,, \ D, with f € R
for all k; we wish to show that f has a root in C. As each fj;, € R, there exists
zr € C with f(z;) = 0. By Lemma 2, the z; are bounded, and so there exists
a convergent subsequence z,, — 2. So replacing {f;}, {z;} by subsequences, we
may assume z; — z. We claim f(z) = 0, and thus f € R. Indeed, we have

1F(2) = fe(z)l < 1F(2) = fz)| + £ () = fe(z)l (%)

Taking j, k large, we may make the right hand side of (x) arbitrarily small, by
the continuity of f and the fact that the f; converge to f pointwise. Now taking
Jj =k large, fi(z;) =0, so we may make |f(z)| arbitrarily small. Thus f(z) =0
as desired.

So R is both open and closed in X,, \ D. But by Lemma 1, X,, \ D is
connected, so R = X,, \ D. In particular, every polynomial of degree n with
non-zero discriminant has a root.

It remains only to show that those degree n polynomials f with zero dis-
criminant have a root. But such polynomials f have a factor g in common with
their derivatives f’. The degree of g is less than that of f, and so we are done
by induction on n, as the degree 1 case is trivial.
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