Yet Another Proof of the Fundamental Theorem of Algebra

Daniel Litt

March 5, 2011

1 Strategy

We prove the fundamental theorem of algebra, using only elementary techniques from calculus, point-set topology, and linear algebra; this proof apparently does not appear in the extensive literature on the subject [1], [2]. The exposition is essentially self-contained.

Theorem 1 (Fundamental Theorem of Algebra). Every non-constant polynomial with complex coefficients has a root in \mathbb{C} .

This is the strategy of the proof. Let $X_n \simeq \mathbb{C}^n$ be the space of degree n monic polynomials with complex coefficients, via the identification $(a_1, ..., a_n) \mapsto z^n + \sum_{i=1}^n a_i z^i$. Let $D \subset X_n$ be the zero locus of the discriminant, and let $R \subset X_n \setminus D$ be the set of polynomials with non-zero discriminant which have at least one complex root. We show:

- 1. $X_n \setminus D$, the set of monic degree n polynomials with non-zero discriminant, is connected.
- 2. R, the set of monic degree n polynomials with non-zero discriminant which have at least one root, is both open and closed in $X_n \setminus D$. As R is nonempty it is thus equal to $X_n \setminus D$, so every monic degree n polynomial with non-zero discriminant has a root.
- 3. By induction on n, every polynomial with zero discriminant has a root.

2 Preliminaries

The following preliminary lemma is the only part of the argument that uses that the ground field is \mathbb{C} , rather than \mathbb{R} .

Lemma 1. Let $V \subset \mathbb{C}^n$ be the zero locus of some polynomial $p(x) = p(x_1, ..., x_n)$. Then $\mathbb{C}^n \setminus V$ is path-connected, and thus connected.

Proof. Let $y, z \in \mathbb{C}^n \setminus V$ be two points in the complement of V. Consider the set $S = \{cy + (1-c)z \mid c \in \mathbb{C}\} \subset \mathbb{C}^n$, which is a complex line connecting y and z. Then $S \cap V$ is a finite set, as p(cy + (1-c)z) is a polynomial in the single complex variable c, and thus has at most finitely many zeros. In particular, $S \setminus (S \cap V)$ is homeomorphic to the complex plane with finitely many points removed, and so is path connected. Thus there is a path in $S \setminus (S \cap V)$ connecting y and z. \square

We will also need an easy lemma bounding the size of the roots of a monic polynomial in terms of its coefficients.

Lemma 2. Let $\{f_{\alpha}\}$ be a set of monic degree n polynomials whose coefficients all lie in some bounded region of \mathbb{C} . Then there exists C > 0 such that if z is a zero of f_{α} for some α , then |z| < C.

Proof. This is immediate from the fact that

$$\frac{f_{\alpha}(z)}{z^n} \to 1 \text{ as } |z| \to \infty$$

uniformly in α .

Finally, we introduce the resultant and discriminant. Let k be a field and let $f, g \in k[x]$ be non-constant polynomials with coefficients in k. Then there is a map

$$\psi_{f,g}: k[x]/(f) \oplus k[x]/(g) \to k[x]/(fg)$$

given by

$$(a + (f), b + (g)) \mapsto ag + bf + (fg).$$

By the chinese remainder theorem, this map is a k-vector space isomorphism if and only if gcd(f, g) = 1. Define the resultant

$$R_{f,g} = \det(\psi_{f,g}).$$

Note that by the previous remark, $R_{f,g}=0$ if and only if f,g have a common factor. Taking $k=\mathbb{C}(a_0,a_1,...,a_n,b_0,b_1,...,b_m)$ with

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, \ g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

and choosing bases for k[x]/(f), k[x]/(g), k[x]/(fg) gives a formula for $R_{f,g}$ as a polynomial in the coefficients of f,g for general polynomials f,g with complex coefficients.

Now let f be any polynomial of degree at least 2 with complex coefficients, and define the discriminant $D_f = R_{f,f'}$, where f' is the derivative of f. Note that D_f is a polynomial in the coefficients of f. Furthermore, $D_f = 0$ if and only if f has a factor in common with its derivative.

3 The Proof

We now prove the fundamental theorem of algebra (Theorem 1).

Let $X_n \simeq \mathbb{C}^n$ be the space of degree n monic polynomials with complex coefficients, via the identification $(a_1,...,a_n)\mapsto z^n+\sum_{i=1}^n a_iz^i$; we endow X_n with the analytic topology. Let $D\subset X_n, D:=\{f\in X_n\mid D_f=0\}$ be the set of polynomials f with discriminant 0. Namely, D consists of those polynomials which have a factor in common with their derivative. Note that D is a closed subset of X_n , as it is the zero set of a polynomial. Define $R\subset X_n\setminus D$, by

$$R = \{ f \in X_n \setminus D \mid \exists z \in \mathbb{C} \text{ such that } f(z) = 0 \}.$$

That is, R consists of those polynomials, with non-zero discriminant, which have a root in \mathbb{C} . Note that R is non-empty; for example, it contains $z^n - 1$.

We claim that R is open in $X_n \setminus D$, in the subspace topology. To see this, let $\operatorname{ev}: \mathbb{C} \times (X_n \setminus D) \to \mathbb{C}$ be the evaluation map $(z,p) \mapsto p(z)$. Consider $f \in R$; by definition, f has a root t, so $\operatorname{ev}(t,f) = 0$. Furthermore, $(\frac{d}{dt}\operatorname{ev})(t,f) = f'(t)$ is non-zero, as otherwise (z-t) divides both f and f', and thus $D_f = 0$, which contradicts the fact that $f \notin D$.

Thus, by the implicit function theorem, there exists an open neighborhood $U \subset X_n \setminus D$ with $f \in U$, and a function $r: U \to \mathbb{C}$ such that r(f) = t and $g(r(g)) = \operatorname{ev}(r(g), g) = 0$ for all $g \in U$. That is, we have found a neighborhood U of f and a function on U parametrizing roots of polynomials in U; in particular, all of the polynomials in U have a root. Thus $U \subset R$, and so R is open.

Now, we claim R is closed in $X_n \setminus D$. Let $f_k \to f$ in $X_n \setminus D$, with $f_k \in R$ for all k; we wish to show that f has a root in \mathbb{C} . As each $f_k \in R$, there exists $z_k \in \mathbb{C}$ with $f_k(z_k) = 0$. By Lemma 2, the z_k are bounded, and so there exists a convergent subsequence $z_{\alpha_k} \to z$. So replacing $\{f_j\}, \{z_j\}$ by subsequences, we may assume $z_j \to z$. We claim f(z) = 0, and thus $f \in R$. Indeed, we have

$$|f(z) - f_k(z_i)| \le |f(z) - f(z_i)| + |f(z_i) - f_k(z_i)|.$$
 (*)

Taking j, k large, we may make the right hand side of (*) arbitrarily small, by the continuity of f and the fact that the f_k converge to f pointwise. Now taking j = k large, $f_k(z_j) = 0$, so we may make |f(z)| arbitrarily small. Thus f(z) = 0 as desired.

So R is both open and closed in $X_n \setminus D$. But by Lemma 1, $X_n \setminus D$ is connected, so $R = X_n \setminus D$. In particular, every polynomial of degree n with non-zero discriminant has a root.

It remains only to show that those degree n polynomials f with zero discriminant have a root. But such polynomials f have a factor g in common with their derivatives f'. The degree of g is less than that of f, and so we are done by induction on n, as the degree 1 case is trivial.

References

- [1] B. Fine and G. Rosenberger. *The Fundamental Theorem of Algebra*. Undergraduate Texts in Mathematics. Springer Verlag, Berlin, 1997.
- [2] Anweshi (mathoverflow.net/users/2938). Ways to prove the fundamental theorem of algebra. MathOverflow. URL: http://mathoverflow.net/questions/10535 (version: 2010-01-04).