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A Quick Note

– A big thanks to Daniel Litt for organizing this reading seminar,

recommending papers, helping with questions!!

– Goals for this talk:
– Understand the Weil conjectures,
– Understand why the relevant objects should be interesting,
– See elementary but concrete examples,
– Count all of the things!
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Varieties

Fix q a prime and Fq the (unique) finite field with q elements, along with its

(unique) degree n extensions

Fqn =
{

x ∈ Fq

∣∣∣ xqn

− x = 0
}
∀ n ∈ Z≥1

Definition (Projective Algebraic Varieties)

Let J = 〈f1, · · · , fM〉 E k[x0, · · · , xn] be an ideal, then a projective algebraic

variety X ⊂ Pn
F can be described as

X = V (J) =
{
x ∈ Pn

Fq

∣∣∣ f1(x) = · · · = fM (x) = 0
}

where J is generated by homogeneous polynomials in n + 1 variables,

i.e. there is a fixed d = deg fi ∈ Z≥1 such that

f (x) =
∑

I=(i1,··· ,in)∑
j ij =d

αI · x i1
0 · · · x

in
n and f (λ · x) = λd f (x), λ ∈ F×.
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Point Counts

– For a fixed variety X , we can consider its Fq-points X (Fq).
– Note that #X (Fq) <∞ is an integer

– For any L/Fq, we can also consider X (L)
– For [L : Fq ] finite, #X (L) <∞ and are integers for every such n.
– In particular, we can consider the finite counts #X (Fqn ) for any n ≥ 2.

– So we can consider the sequence

[N1,N2, · · · ,Nn, · · · ] := [#X (Fq), #X (Fq2 ), · · · , #X (Fqn ), · · · ].

– Idea: associate some generating function (a formal power series)

encoding the sequence, e.g.

F (z) =

∞∑
n=1

Nnz n = N1z + N2z 2 + · · · .
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Why Generating Functions?

For ordinary generating functions, the coefficients are related to the

real-analytic properties of F :

[z n] · F (z) = [z n] · TF ,z=0(z) =
1

n!

(
∂

∂z

)n

F (z)

∣∣∣∣∣
z=0

= Nn

and also to the complex analytic properties:

[z n] · F (z) :=
1

2πi

∮
S1

F (z)

z n+1
dz =

1

2πi

∮
S1

Nn

z
dz = Nn.

Using the Residue theorem. The latter form is very amenable to

computer calculation.
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Why Generating Functions?

– An OGF is an infinite series, which we can interpret as an analytic

function C −→ C
– In nice situations, we can hope for a closed-form representation.

– A useful example: by integrating a geometric series we can derive

1

1− z
=

∞∑
n=0

z n
(
= 1 + z + z 2 + · · ·

)
=⇒

∫
1

1− z
=

∫ ∞∑
n=0

z n

=

∞∑
n=0

∫
z n for |z | < 1 by uniform convergence

=

∞∑
n=0

1

n + 1
z n+1

=⇒ − log (1− z) =

∞∑
n=1

z n

n

(
= z +

z 2

2
+

z 3

3
+ · · ·

)
.

7



CRAG

D. Zack
Garza

Generating
Functions

Zeta
Functions

Examples

The Weil
Conjectures

Weil for
Curves

Weil for
Projective
m-space

Grassmannians

Weil’s
Proof

Exponential

– For completeness, also recall that

exp(z) :=

∞∑
n=0

z n

n!

– We can regard exp, log as elements in the ring of formal power series

Q[[z ]].

– In particular, for any p(z) ∈ z ·Q[[z ]] we can consider

exp(p(z)), log(1 + p(z))

– Since Q ↪→ C, we can consider these as a complex-analytic functions,

ask where they converge, etc.
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Definition: Local Zeta Function

Problem: count points of a (smooth?) projective variety X/F in all (finite)

degree n extensions of F.

Definition (Local Zeta Function)

The local zeta function of an algebraic variety X is the following formal

power series:

ZX (z) = exp

(
∞∑

n=1

Nn
z n

n

)
∈ Q[[z ]] where Nn := #X (Fn).

Note that

z

(
∂

∂z

)
log ZX (z) = z

∂

∂z

(
N1z + N2

z 2

2
+ N3

z 3

3
+ · · ·

)
= z

(
N1 + N2z + N3z 2 + · · ·

)
(unif. conv.)

= N1z + N2z 2 + · · · =

∞∑
n=1

Nnz n,

which is an ordinary generating function for the sequence (Nn).
10
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Example: A Point

Take X = {pt} = V ({f (x) = x − c})/F for c a fixed element of F. This

yields a single point over F, then

#X (Fq) := N1 = 1

#X (Fq2 ) := N2 = 1

...

#X (Fqn ) := Nn = 1

and so

Z{pt}(z) = exp

(
1 · z + 1 · z 2

2
+ 1 · z 3

3
+ · · ·

)
= exp

(
∞∑

n=1

z n

n

)
= exp (− log (1− z))

=
1

1− z
.

Notice: Z admits a closed form and is a rational function.
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Example: The Affine Line

Take X = A1/F the affine line over F, then We can write

A1(Fqn ) =
{
x = [x1]

∣∣∣ x1 ∈ Fqn

}
as the set of one-component vectors with entries in Fn, so

X (Fq) = q

X (Fq2 ) = q2

...

X (Fqn ) = qn.

Then

ZX (z) = exp

(
∞∑

n=1

qn z n

n

)

= exp

(
∞∑

n=1

(qz)n

n

)
= exp(− log(1− qz))

=
1

1− qz
.
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Example: Affine m-space

Take X = Am/F the affine line over F, then We can write

Am(Fqn ) =
{
x = [x1, · · · , xm]

∣∣∣ xi ∈ Fqn

}
as the set of one-component vectors with entries in Fn, so

X (Fq) = qm

X (Fq2 ) = (q2)m

.

.

.

X (Fqn ) = qnm.
Figure: A2/F3 (q = 3,m = 2, n = 1)

Then

ZX (z) = exp

( ∞∑
n=1

qnm zn

n

)
= exp

( ∞∑
n=1

(qmz)n

n

)
= exp(− log(1− qmz))

=
1

1− qmz
.
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Example: Projective Line

Take X = P1/F, we can still count by enumerating coordinates:

P1(Fqn ) =
{

[x1 : x2]
∣∣∣ x1, x2 6= 0 ∈ Fqn

}
/ ∼ =

{
[x1 : 1]

∣∣∣ x1 ∈ Fqn

}∐
{[1 : 0]} .

Thus

X (Fq) = q + 1

X (Fq2 ) = q2 + 1

.

.

.

X (Fqn ) = qn + 1.
Figure: P1/F3 (q = 3, n = 1)

Thus

ZX (z) = exp

( ∞∑
n=1

(qn + 1)
zn

n

)

= exp

( ∞∑
n=1

qn zn

n
+

∞∑
n=1

1 ·
zn

n

)

=
1

(1− qz)(1− z)
.
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Weil 1

(Weil 1949)

Let X be a smooth projective variety of dimension N over Fq for q a prime,

let ZX (z) be its zeta function, and define ζX (s) = ZX (q−s ).

1 (Rationality)

ZX (z) is a rational function:

ZX (z) =
p1(z) · p3(z) · · · p2N−1(z)

p0(z) · p2(z) · · · p2N (z)
∈ Q(z), i.e. pi (z) ∈ Z[z ]

P0(z) = 1− z

P2N (z) = 1− qN z

Pj (z) =

βi∏
j=1

(1− aj ,k z) for some reciprocal roots aj ,k ∈ C

where we’ve factored each Pi using its reciprocal roots aij .

In particular, this implies the existence of a meromorphic continuation of the

associated function ζX (s), which a priori only converges for <(s)� 0. This

also implies that for n large enough, Nn satisfies a linear recurrence relation.
17
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Weil 2

2 (Functional Equation and Poincare Duality)

Let χ(X ) be the Euler characteristic of X , i.e. the self-intersection

number of the diagonal embedding ∆ ↪→ X × X ; then ZX (z) satisfies

the following functional equation:

ZX

(
1

qN z

)
= ±

(
q

N
2 z
)χ(X )

ZX (z).

Equivalently,

ζX (N − s) = ±
(

q
N
2 −s
)χ(X )

ζX (s).

Note that when N = 1, e.g. for a curve, this relates ζX (s) to ζX (1− s).

Equivalently, there is an involutive map on the (reciprocal) roots

z ⇐⇒ qN

z

αj ,k ⇐⇒ α2N−j ,k

which sends interchanges the coefficients in pj and p2N−j .

18
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Weil 3

3 (Riemann Hypothesis)

The reciprocal roots αj ,k are algebraic integers (roots of some monic

p ∈ Z[x ]) which satisfy

|αj ,k |C = q
j
2 , 1 ≤ j ≤ 2N − 1, ∀k.

4 (Betti Numbers)

If X is a “good reduction mod q” of a nonsingular projective variety X̃

in characteristic zero, then the βi = deg pi (z) are the Betti numbers of

the topological space X̃ (C).

Moral:

– The Diophantine properties of a variety’s zeta function are governed by

its (algebraic) topology.

– Conversely, the analytic properties of encode a lot of

geometric/topological/algebraic information.
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Why is (3) called the “Riemann Hypothesis”?

Recall the Riemann zeta function is given by

ζ(s) =

∞∑
n=1

1

ns
=
∏

p prime

1

1− p−s
.

After modifying ζ to make it symmetric about <(s) = 1
2

and eliminate the

trivial zeros to obtain ζ̂(s), there are three relevant properties

1 “Rationality”: ζ̂(s) has a meromorphic continuation to C with simple

poles at s = 0, 1.

2 “Functional equation”: ζ̂(1− s) = ζ̂(s)
3 “Riemann Hypothesis”: The only zeros of ζ̂ have <(s) = 1

2
.
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Why is (3) called the “Riemann Hypothesis”?

Suppose it holds for some X . Use the facts:

a. |exp (z)| = exp (<(z)) and

b. az := exp (z Log(a)),

and to replace the polynomials Pj with

Lj (s) := Pj (q−s ) =

βj∏
k=1

(
1− αj ,k q−s

)
.
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Analogy to Riemann Hypothesis

Now consider the roots of Lj (s): we have

Lj (s0) = 0 ⇐⇒ (1− αj ,k q−s ) = 0 for some k

⇐⇒ q−s0 =
1

αj ,k

⇐⇒
∣∣q−s0

∣∣ =

∣∣∣∣ 1

αj ,k

∣∣∣∣ by assumption
= q−

j
2

⇐⇒ q−
j
2

(a)
= exp

(
−

j

2
· Log(q)

)
= |exp (−s0 · Log(q))|

(b)
= |exp (−(<(s0) + i · =(s0)) · Log(q))|
(a)
= exp (−(<(s0)) · Log(q))

⇐⇒ −
j

2
· Log(q) = −<(s0) · Log(q) by injectivity

⇐⇒ <(s0) =
j

2
.
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Analogy with Riemann Hypothesis

Roughly speaking, we can apply Log (a conformal map) to send the αj ,k to

zeros of the Lj , this says that the zeros all must lie on the “critical lines” j
2

.

In particular, the zeros of L1 have real part 1
2

(analogy: classical Riemann

hypothesis).
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Precise Relation

– Difficult to find in the literature!

– Idea: make a similar definition for schemes, then take X = Spec Z.

– Define the “reductions mod p” Xp for closed points p.

– Define the local zeta functions ζXp (s) = ZXp (p−s ).

– (Potentially incorrect) Evaluate to find ZXp (z) = 1
1−z

.

– Take a product over all closed points to define

LX (s) =
∏

p prime

ζXp (p−s )

=
∏

p prime

(
1

1− p−s

)
= ζ(s),

which is the Euler product expansion of the classical Riemann Zeta function.

If anyone knows a reference for this, let me know!
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Weil for Curves

The Weil conjectures take on a particularly nice form for curves. Let X/Fq

be a smooth projective curve of genus g, then

1 (Rationality)

ZX (z) =
p1(z)

p0(z)p2(z)
=

p1(z)

(1− z)(1− qz)

2 (Functional Equation)

ZX

(
1

qz

)
= (z
√

q)2−2g
ZX (z)

3 (Riemann Hypothesis)

p1(z) =

β1∏
i=1

(1− ai z) where |ai | =
√

q

4 (Betti Numbers) PΣg (x) = 1 + 2g · x + x2 =⇒ deg p1 = β1 = 2g.

P here is the Poincaré polynomial, the generating function for the Betti numbers. Σg is the surface (real 2-dimensional

smooth manifold) of genus g.
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The Projective Line

Recall ZP1/Fq
(z) = 1

(1−z)(1−qz) .

1 Rationality: Clear!

2 Functional Equation: g = 0 =⇒ 2g − 2 = 2

ZP1

(
1

qz

)
=

1

(1− 1
qz

)(1− q
qz

)
=

qz 2

(1− z)(1− qz)
=

(
√

qz)2

(1− z)(1− qz)
.

3 Riemann Hypothesis: Nothing to check (no p1(z))

4 Betti numbers: Use the fact that PCP1 = 1 + 0 · x + x2, and indeed

deg p0 = deg p2 = 1, deg p1 = 0.

Note that even Betti numbers show up as degrees in the denominator,

odd in the numerator. Allows us to immediately guess the zeta

function for Pn/Fq by knowing H∗CP∞!
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Elliptic Curves

Figure: Some Elliptic Curves

Consider E/Fq.

– (Nontrivial!) The number of points is given by

Nn := E(Fqn ) = (qn + 1)− (αn + αn) where |α| = |α| =
√

q

– Proof: Involves trace (or eigenvalues?) of Frobenius, (could use references)

– dimC E/C = N = 1 and g = 1.

The Weil Conjectures say we should be able to write

ZE (z) =
p1(z)

p0(z)p2(z)
=

p1(z)

(1− z)(1− qz)
=

(1− a1z)(1− a2z)

(1− z)(1− qz)
.
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Elliptic Curves: Weil 1

1 Rationality: using the point count, we can compute

ZE (z) = exp

∞∑
n=1

#E(Fqn )
zn

n

= exp

∞∑
n=1

(qn + 1− (αn + αn))
zn

n

= exp

( ∞∑
n=1

qn ·
zn

n

)
exp

( ∞∑
n=1

1 ·
zn

n

)

exp

( ∞∑
n=1

−αn ·
zn

n

)
exp

( ∞∑
n=1

−αn ·
zn

n

)

= exp (− log (1− qz)) · exp (− log (1− z))

exp (log (1− αz)) · exp (log (1− αz))

=
(1− αz)(1− αz)

(1− z)(1− qz)
∈ Q(z),

which is a rational function of the expected form (Weil 1).
Note that the “expected” point counts show up in the denominator, along with the even Betti numbers, while the

“correction” factor appears in the denominator and odd Betti numbers. 29
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Elliptic Curves: Weil 2 and 3

2 Functional Equation: we use the equivalent formulation of “Poincaré

duality”:

(1− αz)(1− αz)

(1− z)(1− qz)
=

p1(z)

p0(z)p2(z)
=⇒

{
z ⇐⇒ q

z

αj ,k ⇐⇒ α2−j ,k

This amounts to checking that the coefficients of p0, p2 are interchanged,

and that the two coefficients of p1 are interchanged:

Coefs(p0) = {1}
z−→ q

z−−−→
{

1

q

}
= Coefs(p2)

Coefs(p1) = {α,α}
z−→ q

z−−−→
{ q

α
,

q

α

}
= {α,α} using αα = q.

3 RH: Assumed as part of the point count (|α| = q
1
2 )

4 Betti Numbers: PΣ1 (x) = 1 + 2x + x2, and indeed

deg p0 = deg p2 = 1, deg p1 = 2.
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History

– 1801, Gauss: Point count and RH showed for specific elliptic curves

– 1924, Artin: Conjectured for algebraic curves ,

– 1934, Hasse: proved for elliptic curves.

– 1949, Weil: Proved for smooth projective curves over finite fields,

proposed generalization to projective varieties

– 1960, Dwork: Rationality via p-adic analysis

– 1965, Grothendieck et al.: Rationality, functional equation, Betti

numbers using étale cohomology
– Trace of Frobenius on `-adic cohomology
– Expected proof via the standard conjectures. Wide open!

– 1974, Deligne: Riemann Hypothesis using étale cohomology,

circumvented the standard conjectures

– Recent: Hasse-Weil conjecture for arbitrary algebraic varieties over

number fields
– Similar requirements on L-functions: functional equation, meromorphic continuation
– 2001: Full modularity theorem proved, extending Wiles, implies Hasse-Weil for

elliptic curves
– Inroad to Langlands: show every L function coming from an algebraic variety also

comes from an automorphic representation.
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Setup

Take X = Pm/F We can write

Pm(Fqn ) = Am+1(Fqn ) \ {0} / ∼ =
{
x = [x0, · · · , xm]

∣∣∣ xi ∈ Fqn

}
/ ∼

But how many points are actually in this space?

Figure: Points and Lines in P2/F3

A nontrivial combinatorial problem!
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q-Analogs and Grassmannians

To illustrate, this can be done combinatorially: identify Pm
F = GrF(1,m + 1)

as the space of lines in Am+1
F .

Theorem

The number of k-dimensional subspaces of AN
Fq

is the q-analog of the

binomial coefficient:[
N

k

]
q

:=
(qN − 1)(qN−1 − 1) · · · (qN−(k−1) − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Remark: Note limq−→1

[
N
k

]
q

=
(

N
k

)
, the usual binomial coefficient.

Proof: To choose a k-dimensional subspace,

– Choose a nonzero vector v1 ∈ An
F in qN − 1 ways.

– For next step, note that #span {v1} = #
{
λv1

∣∣∣ λ ∈ Fq

}
= #Fq = q.

– Choose a nonzero vector v2 not in the span of v1 in qN − q ways.

– Now note #span {v1, v2} = #
{
λ1v1 + λ2v2

∣∣∣ λi ∈ F
}

= q · q = q2.
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Proof continued

– Choose a nonzero vector v3 not in the span of v1, v2 in qN − q2 ways.

– · · · until vk is chosen in

(qN − 1)(qN − q) · · · (qN − qk−1) ways .

– This yields a k-tuple of linearly independent vectors spanning a k-dimensional
subspace Vk

– This overcounts because many linearly independent sets span Vk , we

need to divide out by the number of ways to choose a basis inside of Vk .

– By the same argument, this is given by

(qk − 1)(qk − q) · · · (qk − qk−1)

Thus

#subspaces =
(qN − 1)(qN − q)(qN − q2) · · · (qN − qk−1)

(qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1)

=
qN − 1

qk − 1
·
(

q

q

)
qN−1 − 1

qk−1 − 1
·
(

q2

q2

)
qN−2 − 1

qk−2 − 1
· · ·
(

qk−1

qk−1

)
qN−(k−1) − 1

qk−(k−1)−1

=
(qN − 1)(qN−1 − 1) · · · (qN−(k−1) − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

�
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Counting Points

Note that we’ve actually computed the number of points in any

Grassmannian.

Identify Pm
F = GrF(1,m + 1) as the space of lines in Am+1

F .

We obtain a simplification (importantly, a sum formula) when setting k = 1:[
m + 1

1

]
q

=
qm+1 − 1

q − 1
= qm + qm−1 + · · ·+ q + 1 =

m∑
j=0

qj .

Thus

X (Fq) =

m∑
j=0

qj

X (Fq2 ) =

m∑
j=0

(
q2
)j

...

X (Fqn ) =

m∑
j=0

(qn)
j
.
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Computing the Zeta Function

So

ZX (z) = exp

(
∞∑

n=1

m∑
j=0

(qn)
j z n

n

)

= exp

(
∞∑

n=1

m∑
j=0

(
qj z
)n

n

)

= exp

(
m∑

j=0

∞∑
n=1

(
qj z
)n

n

)

= exp

(
m−1∑
j=0

− log(1− qj z)

)

=

m∏
j=0

(
1− qj z

)−1

=

(
1

1− z

)(
1

1− qz

)(
1

1− q2z

)
· · ·
(

1

1− qmz

)
,

Miraculously, still a rational function! Consequence of sum formula,

works in general.
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Checking the Weil Conjectures

ZX (z) =

m∏
j=0

(
1

1− qj z

)
.

1 Rationality: Clear!

2 Functional Equation: Less clear, but true:

ZX

(
1

qmz

)
=

1

(1− 1/qmt) (1− q/qmt) · · · (1− qm/qmz)

=
qmz · qm−1z . . . qz · z

(1− z)(1− qz) . . . (1− qmz)

= q
m(m+1)

2 z m+1 · ZX (z)

=
(

q
m
2 z
)χ(X )

· ZX (z)

.
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Checking

ZX (z) =

m∏
j=0

(
1

1− qj z

)
.

3 Riemann Hypothesis: Reduces to the statement {αi} =
{

qm

αj

}
.

– Clear since αj = qj and every αi is a lower power of q.

4 Betti Numbers: Use the fact that PCPm (x) = 1 + x2 + x4 + · · ·+ x2m

– Only even dimensions, and correspondingly no numerator.
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An Easier Proof: “Paving by Affines”

Quick recap:

Z{pt} =
1

1− z
ZP1 (z) =

1

1− qz
ZA1 (z) =

1

(1− z)(1− qz)
.

Note that P1 = A1
∐
{∞} and correspondingly ZP1 (z) = ZA1 (z) · Z{pt}(z).

This works in general:

Lemma (Excision)

If Y /Fq ⊂ X/Fq is a closed subvariety, for U = X \ Y ,

ZX (z) = ZY (z) · ZU (z).

Proof: Let Nn = #Y (Fqn ) and Mn = #U(Fqn ), then

ζX (z) = exp

(
∞∑

n=1

(Nn + Mn)
z n

n

)

= exp

(
∞∑

n=1

Nn ·
z n

n
+

∞∑
n=1

Mn ·
z n

n

)

= exp

(
∞∑

n=1

Nn ·
z n

n

)
· exp

(
∞∑

n=1

Mn ·
z n

n

)
= ζY (z) · ζU (z).
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An Easier Proof: “Paving”

Note that geometry can help us here: we have a decomposition

Pn = Pn−1
∐
An, and thus inductively a stratification

Pm =
∐m

j=0
Aj = A0

∐
A1
∐
· · ·
∐
Am.

Recalling that

ZX
∐

Y (z) = ZX (z) · ZY (z)

and ZAj (z) = 1
1−qj z

, we have

ZPm (z) =

m∏
j=0

ZAj (z) =

m∏
j=0

1

1− qj z
.
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Motivation

Consider now X = Gr(k,m)/F – by the previous computation, we know

X (Fqn ) =

[
m

k

]
qn

:=
(qnm − 1)(qnm−1 − 1) · · · (qnm−n(k−1) − 1)

(qnk − 1)(qn(k−1) − 1) · · · (qn − 1)

but the corresponding Zeta function is much more complicated than the

previous examples:

ZX (z) = exp

(
∞∑

n=1

[
m

k

]
qn

z n

n

)
= · · ·?.

Since dimC GrC(k,m) = 2k(m − k), by Weil we should expect

ZX (z) =

2k(m−k)∏
j=0

p2(j+1)(z)

p2j (z)

with deg pj = βj .
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Grassmannian

It turns out that (proof omitted) one can show[
m

k

]
q

=

k(m−k)∑
j=0

λm,k (j)qj =⇒ ZX (z) =

k(m−k)∏
j=0

(
1

1− qj x

)λm,k (j)

where λm,k is the number of integer partitions of of [i ] into at most m − k

parts, each of size at most k.

– One proof idea: use combinatorial identities to write q-analog
[

m
k

]
q

as a

sum

– Second proof idea: “pave by affines” (need a reference!)

This lets us conclude that the Poincare polynomial of the complex

Grassmannian is given by

PGrC(m,k)(x) =

k(m−k)∑
n=1

λm,k (n)x2n,

In particular, the H∗GrC(m, k) vanishes in odd degree.
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Diagonal Hypersurfaces

Proof of rationality of ZX (T ) for X a diagonal hypersurface.

– Set q to be a prime power and consider X/Fq defined by

X = V (a0xn
0 + · · ·+ ar xn

r ) ⊂ Fr+1
q .

– We want to compute N = #X .

– Set di = gcd(ni , q − 1).

– Define the character

ψq : Fq −→ C×

a 7→ exp

(
2πi TrFq/Fp (a)

p

)
.

– By Artin’s theorem for linear independence of characters, ψq 6≡ 1 and every additive
character of Fq is of the form a 7→ ψq(ca) for some c ∈ Fq .

– Shorthand notation: say a ∼ 0 ⇐⇒ a ≡ 0 mod 1.
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A Diagonal Hypersurface

– Fix an injective multiplicative map

φ : F×q −→ C×.

– Define

χα,n : F×qn −→ C×

x 7→ φ(x)α(qn−1)

for α ∈ Q/Z, n ∈ Z, α(qn − 1) ≡ 0 mod 1.

– Extend this to Fqn by {
1 α ≡ 0 mod 1

0 else
.

– Set χα = χα,1.

– Proposition:

α(q − 1) ≡ 0 mod 1 =⇒ χα,n(x) = χα(NmFqn /Fq (x))

– Proposition:

d := gcd(n, q − 1), u ∈ Fq =⇒ #
{

x ∈ Fq

∣∣∣ xn = u
}

=
∑

dα∼0

χα(u)
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A Diagonal Hypersurface

– This implies

N =
∑

α=[α0,··· ,αr ]
diαi∼0

∑
u=[u0,··· ,ur ]

Σ ai ui =0

r∏
j=0

χαj (uj )

= qr +
∑

α, αi∈(0,1)
diαi∼0

 r∏
j=0

χαj (a−1
j )

∑
Σ ui =0

r∏
j=0

χαj (uj )

.
since the inner sum is zero if some but not all of the αi ∼ 0.

– Evaluate the innermost sum by restricting to u0 6= 0 and setting

ui = u0vi and v0 := 1:∑
Σ ui =0

r∏
j=0

χαj (uj ) =
∑
u0 6=0

χΣ αi
(u0)

∑
Σ vi =0

r∏
j=0

χαj (vj )

=

{
(q − 1)

∑
Σ vi =0

∏r
j=0 χαj (vj ) if

∑
αi ∼ 0

0 else
.
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A Diagonal Hypersurface

– Define the Jacobi sum for α where
∑
αi ∼ 0:

J(α) :=

(
1

q − 1

) ∑
Σ ui =0

r∏
j=0

χαj (uj ) =
∑

Σ vi =0

r∏
j=1

χαj (vj )

– Express N in terms of Jacobi sums as

N = qr + (q − 1)
∑

Σαi∼0
diαi∼0
α∈(0,1)

r∏
j=0

χαj (a−1
j )J(α).

– Evaluate J(α) using Gauss sums: for χ : Fq −→ C a multiplicative

character, define

G(χ) :=
∑
x∈Fq

χ(x)ψq(x).

– Proposition: for any χ 6= χ0,

– |G(χ)| = q
1
2

– G(χ)G(χ) = qχ(−1)
– G(χ0) = 0

χ(t) =
G(χ)

q

∑
x∈Fq

χ(x)ψq(tx).
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A Diagonal Hypersurface

– Proposition: if

∑
αi ∼ 0 =⇒ J(α) =

1

q

r∏
k=1

G(χαk ) and |J(α)| = q
r−1

2 .

– We thus obtain

N = qr +

(
q − 1

q

) ∑
Σαi∼0
diαi∼0
α∈(0,1)

r∏
j=0

χαj (a−1
j )G(χαj ).

– We now ask for number of points in Fqν and consider a point count

Nν = #

{
[x0 : · · · : xr ] ∈ Pr

Fνq

∣∣∣ r∑
i=0

ai x
n
i = 0

}
.

– Theorem (Davenport, Hasse)

(q − 1)α ∼ 0 =⇒ −G(χα,ν) = (−G(χα))ν .
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A Diagonal Hypersurface

– We have a relation (qν − 1)Nν = Nν .

– This lets us write

Nν =

r−1∑
j=0

qjν +
∑

∑
αi ∼0

gcd(n,qν−1)αi∼0
αi∈(0,1)

r∏
j=0

χαj ,ν (ai )Jν(α).

– Set

µ(α) = min
{
µ
∣∣∣ (qµ − 1)α ∼ 0

}
C(α) = (−1)r+1

r∏
j=1

χα0,µ(α)(aj ) · Jµ(α)(α).

– Plugging into the zeta function Z yields

exp

(
∞∑
ν=1

Nν
T ν

ν

)
=

r−1∏
j=0

(
1

1− qj T

) ∏
∑
αi∼0

gcd(n,qν−1)αi∼0
αi∈(0,1)

(
1− C(α)Tµ(α)

) (−1)r

µ(α)
,

which is evidently a rational function! �
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