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We begin with a relatively easy theorem, which points in the direction of the proof.

Theorem 1. Let G be a Lie group with Lie algebra g. Let H ↪→ G be a be a subgroup (in the category Grp).
Then H is a Lie subgroup if and only if there exists a subspace V ⊂ g and neighborhoods 0 ∈ U ⊂ g and
e ∈W ⊂ G such that

exp |U∩V : U ∩ V →W ∩H
is a diffeomorphism.

Proof. If H is a Lie subgroup, the theorem is obvious. For the converse, note that for h ∈ H, we may
consider exp |−1

U∩V (h−1 · −), which is a map hW ∩ H → U ∩ V . It is clear that these maps cover H and
are mutually compatible (as they are diffeomorphisms onto their image in G) and so they induce a manifold
structure on H; by construction, this manifold structure is compatible with that of G. �

Theorem 2. Let G be a Lie group, and H ↪→ G a subgroup (in the category Grp), with closed image. Then
H is an embedded Lie subgroup.

Let h be the subset of g defined as

h := {x ∈ g | exp(tx) ∈ H,∀t ∈ R}.

That is, the x ∈ g such that the one-parameter subgroup generated by x is entirely contained in H.

Lemma 1. h is a subspace of g.

Before proving this we need an auxiliary lemma:

Lemma 2. Let x, y ∈ g. Then

limn→∞

(
exp

(
t

n
· x

)
exp

(
t

n
· y

))n

= exp(t(x+ y)).

Proof of Lemma 2. Consider the path given by γ : R → G, where γ(t) = exp(tx) exp(ty). Let 0 ∈ U ⊂ g,
e ∈W ⊂ G be neighborhoods such that exp |U : U →W is a diffeomorphism, and let Z(t) = exp |−1

U ◦γ(t)|U ′ ,
where 0 ∈ U ′ ⊂ R is a sufficiently small neighborhood of zero. Then we have

γ(t) = exp(Z(t))

for t ∈ U ′. Note that dZ|0 = d exp−1 ◦d(exp(tx) exp(ty))|0 = d(exp(tx) exp(ty))|0 = x + y so taking Taylor
series, we have

exp(tx) exp(ty) = exp(t(x+ y) +O(t2))

on some small neighborhood of 0 ∈ R.
But then

lim
n→∞

(
exp

(
t

n
· x

)
exp

(
t

n
· y

))n

= lim
n→∞

exp(
t

n
· (x+ y) +O((t/n)2))n

= lim
n→∞

exp(t · (x+ y) +O(t2/n))

= exp(t(x+ y))

as desired. �

Now we can prove that h is a subspace of g.
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Proof of Lemma 1. It is clear that h is closed under scalar multiplication. To see that it is closed under
addition, note that if x, y ∈ h, then

(
exp

(
t
n · x

)
exp

(
t
n · y

))n is in H; as H is closed, we thus have that

limn→∞

(
exp

(
t

n
· x

)
exp

(
t

n
· y

))n

= exp(t(x+ y)) ∈ H

by Lemma 2. �

So to complete the proof of the theorem, we want to find open sets 0 ∈ U ⊂ g, e ∈ W ⊂ G such that
exp |U∩V : U ∩ V → W ∩ H is a diffeomorphism. Let f ⊂ g be a complementary subspace to h. Let
α : h × f → g be given by α(x, y) = exp(x) exp(y). Note that dα|0 = idg, so α is a diffeomorphism when
restricted to a neighborhood Uh × Uf ⊂ h× f of 0.

Lemma 3. There exists an open 0 ∈ Uf ⊂ f such that

H ∩ exp(Uf − {0}) = ∅.

Proof of Lemma 3. Assume the contrary. Then there exists a sequence (xj) ∈ Uf with exp(xj) ∈ H, xj → 0.
Let || · ||f be a norm on f and let (x′j) = (xj/||xj ||f); by the compactness of the unit ball, there is some
subsequence (x′jk

) converging to y ∈ f with y 6= 0. Let tjk
= ||xjk

||f. As tjk
→ 0, we may choose integers

njk
(t) such that tjk

njk
(t)→ t. But then we have

exp(ty) = exp(t · limx′jk
) = exp(limnjk

(t)tjk
x′jk

) = lim exp(njk
(t)xjk

) = lim exp(xjk
)njk

(t) ∈ H
But then y ∈ h, so y = 0, which is a contradiction, as ||y||f = 1. �

So we may choose Uf as in Lemma 3 such that α : Uf × Uh → G is a diffeomorphism on its image.
Now we claim that exp(Uh × {0}) contains some neighborhood of the identity in H. Indeed, let S =

Im(α|Uh×Uf
); S ⊂ G is an open neighborhood of e. For x ∈ S ∩ H we have that x = exp(x′) exp(y′) for

x′ ∈ Uh, y
′ ∈ Uf; but then x, exp(x′) ∈ H and so exp(y′) ∈ H ∩ exp(Uf), so by Lemma 3 y′ = 0. Thus x is in

the image of exp.
So we may take Uh × Uf to be our U from Theorem 1, and take S to be our W , completing the proof.
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