CLOSED SUBGROUPS OF LIE GROUPS ARE LIE SUBGROUPS
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We begin with a relatively easy theorem, which points in the direction of the proof.

Theorem 1. Let G be a Lie group with Lie algebra g. Let H — G be a be a subgroup (in the category Grp).
Then H is a Lie subgroup if and only if there exists a subspace V- C g and neighborhoods 0 € U C g and
e € W C G such that

expluny :UNV - WnNH

is a diffeomorphism.

Proof. If H is a Lie subgroup, the theorem is obvious. For the converse, note that for h € H, we may
consider exp |5y (h~! - =), which is a map AW N H — UNV. Tt is clear that these maps cover H and
are mutually compatible (as they are diffeomorphisms onto their image in G) and so they induce a manifold
structure on H; by construction, this manifold structure is compatible with that of G. ]

Theorem 2. Let G be a Lie group, and H — G a subgroup (in the category Grp), with closed image. Then
H is an embedded Lie subgroup.

Let b be the subset of g defined as
h:={z €glexp(tr) € H,Vt € R}.
That is, the « € g such that the one-parameter subgroup generated by « is entirely contained in H.
Lemma 1. § is a subspace of g.
Before proving this we need an auxiliary lemma:

Lemma 2. Let x,y € g. Then

limy, oo <exp (i z) exp (:; y>)n = exp(t(z + y)).

Proof of Lemma 2. Consider the path given by v : R — G, where (t) = exp(tz)exp(ty). Let 0 € U C g,
e € W C G be neighborhoods such that exp |7 : U — W is a diffeomorphism, and let Z(t) = exp |;' o(t)|v,
where 0 € U’ C R is a sufficiently small neighborhood of zero. Then we have

() = exp(Z(t))
for t € U’. Note that dZ|o = dexp ! od(exp(tx) exp(ty))|o = d(exp(tz) exp(ty))|o = = + y so taking Taylor
series, we have
exp(tx) exp(ty) = exp(t(z + y) + O(t?))

on some small neighborhood of 0 € R.

But then
. t t " . t 2\\n
lim [ exp —z)exp( -y = lim exp(ﬁ (z4+y)+0((t/n)7))
= lim exp(t- (z +y) + O(t*/n))
= exp(t(z +y))
as desired. 0

Now we can prove that § is a subspace of g.



Proof of Lemma 1. It is clear that b is closed under scalar multiplication. To see that it is closed under
addition, note that if z,y € b, then (exp (% . w) exp (% : y))" isin H; as H is closed, we thus have that

limy, oo (exp <:l x) exp <:L y))n =exp(t(z+y)) € H

by Lemma 2. O

So to complete the proof of the theorem, we want to find open sets 0 € U C g,e € W C G such that
explunv : UNV — W N H is a diffetomorphism. Let f C g be a complementary subspace to h. Let
a:h x§— gbe given by a(z,y) = exp(z) exp(y). Note that da|y = idy, so a is a diffeomorphism when
restricted to a neighborhood Uy x Uy C h x | of 0.

Lemma 3. There exists an open 0 € U; C | such that
HnN exp(Uf —{0}) = 0.

Proof of Lemma 3. Assume the contrary. Then there exists a sequence (x;) € Us with exp(z;) € H, z; — 0.
Let [| - ||j be a norm on § and let (%) = (x;/||z;|[;); by the compactness of the unit ball, there is some
subsequence () converging to y € f with y # 0. Let t;, = [[x;,[[;. Ast; — 0, we may choose integers
nj, (t) such that ¢;, n,, (t) — t. But then we have

exp(ty) = exp(t - limz}, ) = exp(limn;, (t)t;, 275, ) = limexp(ny, (t)z;,) = lim exp(z;, )" ®ecH

But then y € b, so y = 0, which is a contradiction, as ||y||s = 1. O

So we may choose U; as in Lemma 3 such that o : U; x Uy — G is a diffeomorphism on its image.

Now we claim that exp(Uy x {0}) contains some neighborhood of the identity in H. Indeed, let S =
Im(aly, xv;); S C G is an open neighborhood of e. For x € SN H we have that 2 = exp(z') exp(y’) for
x’ € Uy, y’ € Uy; but then z,exp(z’) € H and so exp(y’) € H Nexp(Uj), so by Lemma 3 ' = 0. Thus z is in
the image of exp.

So we may take Uy x U to be our U from Theorem 1, and take S to be our W, completing the proof.



