CLOSED SUBGROUPS OF LIE GROUPS ARE LIE SUBGROUPS

DANIEL LITT

We begin with a relatively easy theorem, which points in the direction of the proof.

Theorem 1. Let G be a Lie group with Lie algebra \mathfrak{g} . Let $H \hookrightarrow G$ be a be a subgroup (in the category Grp). Then H is a Lie subgroup if and only if there exists a subspace $V \subset \mathfrak{g}$ and neighborhoods $0 \in U \subset \mathfrak{g}$ and $e \in W \subset G$ such that

$$\exp|_{U\cap V}:U\cap V\to W\cap H$$

is a diffeomorphism.

Proof. If H is a Lie subgroup, the theorem is obvious. For the converse, note that for $h \in H$, we may consider $\exp |_{U \cap V}^{-1}(h^{-1} \cdot -)$, which is a map $hW \cap H \to U \cap V$. It is clear that these maps cover H and are mutually compatible (as they are diffeomorphisms onto their image in G) and so they induce a manifold structure on H; by construction, this manifold structure is compatible with that of G.

Theorem 2. Let G be a Lie group, and $H \hookrightarrow G$ a subgroup (in the category Grp), with closed image. Then H is an embedded Lie subgroup.

Let \mathfrak{h} be the subset of \mathfrak{g} defined as

$$\mathfrak{h} := \{ x \in \mathfrak{g} \mid \exp(tx) \in H, \forall t \in \mathbb{R} \}.$$

That is, the $x \in \mathfrak{g}$ such that the one-parameter subgroup generated by x is entirely contained in H.

Lemma 1. \mathfrak{h} *is a subspace of* \mathfrak{g} .

Before proving this we need an auxiliary lemma:

Lemma 2. Let $x, y \in \mathfrak{g}$. Then

$$\lim_{n\to\infty} \left(\exp\left(\frac{t}{n} \cdot x\right) \exp\left(\frac{t}{n} \cdot y\right) \right)^n = \exp(t(x+y)).$$

Proof of Lemma 2. Consider the path given by $\gamma: \mathbb{R} \to G$, where $\gamma(t) = \exp(tx) \exp(ty)$. Let $0 \in U \subset \mathfrak{g}$, $e \in W \subset G$ be neighborhoods such that $\exp|_U: U \to W$ is a diffeomorphism, and let $Z(t) = \exp|_U^{-1} \circ \gamma(t)|_{U'}$, where $0 \in U' \subset \mathbb{R}$ is a sufficiently small neighborhood of zero. Then we have

$$\gamma(t) = \exp(Z(t))$$

for $t \in U'$. Note that $dZ|_0 = d \exp^{-1} \circ d(\exp(tx) \exp(ty))|_0 = d(\exp(tx) \exp(ty))|_0 = x + y$ so taking Taylor series, we have

$$\exp(tx)\exp(ty) = \exp(t(x+y) + O(t^2))$$

on some small neighborhood of $0 \in \mathbb{R}$.

But then

$$\lim_{n \to \infty} \left(\exp\left(\frac{t}{n} \cdot x\right) \exp\left(\frac{t}{n} \cdot y\right) \right)^n = \lim_{n \to \infty} \exp\left(\frac{t}{n} \cdot (x+y) + O((t/n)^2)\right)^n$$

$$= \lim_{n \to \infty} \exp(t \cdot (x+y) + O(t^2/n))$$

$$= \exp(t(x+y))$$

as desired.

Now we can prove that \mathfrak{h} is a subspace of \mathfrak{g} .

Proof of Lemma 1. It is clear that \mathfrak{h} is closed under scalar multiplication. To see that it is closed under addition, note that if $x, y \in \mathfrak{h}$, then $\left(\exp\left(\frac{t}{n} \cdot x\right) \exp\left(\frac{t}{n} \cdot y\right)\right)^n$ is in H; as H is closed, we thus have that

$$\lim_{n\to\infty} \left(\exp\left(\frac{t}{n} \cdot x\right) \exp\left(\frac{t}{n} \cdot y\right) \right)^n = \exp(t(x+y)) \in H$$

by Lemma 2. \Box

So to complete the proof of the theorem, we want to find open sets $0 \in U \subset \mathfrak{g}, e \in W \subset G$ such that $\exp|_{U \cap V} : U \cap V \to W \cap H$ is a diffeomorphism. Let $\mathfrak{f} \subset \mathfrak{g}$ be a complementary subspace to \mathfrak{h} . Let $\alpha : \mathfrak{h} \times \mathfrak{f} \to \mathfrak{g}$ be given by $\alpha(x,y) = \exp(x) \exp(y)$. Note that $d\alpha|_0 = \mathrm{id}_{\mathfrak{g}}$, so α is a diffeomorphism when restricted to a neighborhood $U_{\mathfrak{h}} \times U_{\mathfrak{f}} \subset \mathfrak{h} \times \mathfrak{f}$ of 0.

Lemma 3. There exists an open $0 \in U_f \subset f$ such that

$$H \cap \exp(U_{\mathfrak{f}} - \{0\}) = \emptyset.$$

Proof of Lemma 3. Assume the contrary. Then there exists a sequence $(x_j) \in U_{\mathfrak{f}}$ with $\exp(x_j) \in H$, $x_j \to 0$. Let $||\cdot||_{\mathfrak{f}}$ be a norm on \mathfrak{f} and let $(x'_j) = (x_j/||x_j||_{\mathfrak{f}})$; by the compactness of the unit ball, there is some subsequence (x'_{j_k}) converging to $y \in \mathfrak{f}$ with $y \neq 0$. Let $t_{j_k} = ||x_{j_k}||_{\mathfrak{f}}$. As $t_{j_k} \to 0$, we may choose integers $n_{j_k}(t)$ such that $t_{j_k}n_{j_k}(t) \to t$. But then we have

$$\exp(ty) = \exp(t \cdot \lim x'_{j_k}) = \exp(\lim n_{j_k}(t)t_{j_k}x'_{j_k}) = \lim \exp(n_{j_k}(t)x_{j_k}) = \lim \exp(x_{j_k})^{n_{j_k}(t)} \in H$$
But then $y \in \mathfrak{h}$, so $y = 0$, which is a contradiction, as $||y||_{\mathfrak{f}} = 1$.

So we may choose $U_{\mathfrak{f}}$ as in Lemma 3 such that $\alpha: U_{\mathfrak{f}} \times U_{\mathfrak{h}} \to G$ is a diffeomorphism on its image.

Now we claim that $\exp(U_{\mathfrak{h}} \times \{0\})$ contains some neighborhood of the identity in H. Indeed, let $S = \operatorname{Im}(\alpha|_{U_{\mathfrak{h}} \times U_{\mathfrak{f}}})$; $S \subset G$ is an open neighborhood of e. For $x \in S \cap H$ we have that $x = \exp(x') \exp(y')$ for $x' \in U_{\mathfrak{h}}, y' \in U_{\mathfrak{f}}$; but then $x, \exp(x') \in H$ and so $\exp(y') \in H \cap \exp(U_{\mathfrak{f}})$, so by Lemma 3 y' = 0. Thus x is in the image of exp.

So we may take $U_{\mathfrak{h}} \times U_{\mathfrak{f}}$ to be our U from Theorem 1, and take S to be our W, completing the proof.