Galois aetions on Tate modules + cohomology

Last tina: Podma uned:
Thm (Serre) A is an $A V / K-f . g$. field of char O

$$
\rho: G a l(\bar{K} / K) \rightarrow G L(T(A))
$$

Then $\hat{\mathbb{Z}}^{x}$ rsalo mentrias
$\left.\subset \frac{\ln \mathrm{m}}{\mathrm{n}} \mathrm{A} \mathrm{n}\right]$
\times ahas $\hat{乙}^{s^{\prime} 2 g}$

Slogen: "many" Glois homotheties.
Today: Content for this thm + discussion abant Geloir oetinas on Tate modulus and colvanolosy.
(1) Galois repins
X-vaiety/K-\#field
finite dim'I v.s. $\quad /^{\wedge} G \cdot l(\bar{K} / k)$-action.
Ex A - AV $H^{\prime}\left(A, Q_{p}\right)=T_{p}(A)^{v} \otimes Q_{p}$.
Properties of these repins:
(1) Unramified at almost all places r of K.
$I_{v} \hookrightarrow G_{a}\left(\bar{K}_{v} / K_{r}\right) \leftrightarrows G_{a}(\bar{K} / k) \rightarrow G_{G}(v)$
trivial \Leftrightarrow unraminiod atv.
Ex X sm. proper variety, good reduction atv Then $H^{\prime}\left(X_{i}, Q_{\rho}\right)$ is unranaind at v if v is not a pliue abve p.
(2) For r above p (p-adic Hodge theary)

$$
\left.\rho\right|_{G_{a}\left(\bar{K}_{v} / k_{v}\right)}=G_{c}\left(\bar{K}_{v} / K_{v}\right) \rightarrow G L(v)
$$

Hagee-Tate \langle is "de Rham" \Rightarrow "potenticlly semistash"
X smiprper al sad redurtion \Rightarrow " crystellise"
(i) Morally (X see perper oll goob relectiai) this neari $\rho\left(G_{a}\left(\mathbb{K}_{0} / k_{\mathrm{N}}\right)\right.$ can be omputed
from de Rhan cok. of $X_{K_{v}}$ + crystulline wh. of $X \otimes K(v)$.
(ii) Hodge-Tate

$$
\begin{aligned}
& \mathbb{C}_{p} \text {-Senilineer Gal-reps } \\
& \mathbb{Z}_{p}(i)=\chi_{c y s}^{\otimes i} \quad \mathbb{C}_{p}(i)=\mathbb{C}_{p} \otimes \mathbb{Z}_{p},(i) \\
& \text { Rem } X \text { sm. proper : } n_{j}: \operatorname{dman} H^{i j}\left(x, \Omega^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V=H^{i}\left(x_{\bar{k}}, Q_{p}\right) \\
& \Omega^{j}=\hat{\Lambda} \Omega_{x}^{\prime}
\end{aligned}
$$

Detn If $\mathrm{Gal}_{1}(\bar{K} / k)$ satisfies $(1)+(1)$
we say its "gementry in the sense of Fonturee -Mczw".
Conj Ceundra repós care fron geomety.
(3) Thm (Bogomolav), $G L_{n}\left(z_{p}\right)$
$\rho: G_{a l}(\bar{R} / k)^{\prime} \rightarrow \operatorname{lin}_{n}^{2}\left(Q_{p}\right)$ ct repin
which is geametri. im ρ is gpen in the $\mathbb{Q}_{p}-p^{\prime} / s$ of its Zoriski-closure.
(Lie img $=$ Lie $\overline{m \rho}$.)
Non-ex: $G_{a}(\overline{\mathbb{Q}} / \mathbb{Q})^{x_{\omega_{\mu}}} \mathbb{Z}_{\mathbb{Z}} \rightarrow \mathbb{Z}_{p}^{x} \rightarrow \mathbb{Z}_{p}$

(4) $\rho: \operatorname{Gal}(\bar{K} / k) \rightarrow G L\left(H^{i}\left(X_{\bar{R}}, \bar{c}, Q_{p}\right)\right)$

Ten ρ is "mixed": IIncressing filtation
Wo on H^{i} a.t, almost all Frobenis aet greiw $H^{i} \mathrm{~L} /$ eigenvaluos als. \#'s of abrolute value $q^{-j / 2}$ equesfield.
Deliza: Weil It Theorie de Hodige It III).
X sm. pryper: H^{i} is pune of at i.
griv $H^{i}=H^{i}$.
2) Honotheties

$$
j: G_{k} \rightarrow G L\left(H^{i}\left(X_{\bar{k}}, Q_{l}\right)\right)
$$

Then if $i>1,\left[\operatorname{img} \cap \mathbb{Z}_{l}^{x}: \mathbb{Z}_{l}^{x}\right]<\infty$.
Slogan: lots of ℓ-ache honotheties.
Pf (i) ETS $\overline{m \rho}$ contains Q_{l}^{*} scaler matrices.
by Bogarviw's gen inge them
(ii) Choose r of K not our l when X has good reduction. Let $F=F$ be Frosenins ct v.
(iii) Can asses all eigenvalues of are alg. \#'s ul abs vine $q^{-i / 2}$.
(Simplify ssumptime F is diagunc1)
(iv) $T=\widetilde{\left\{F^{n}\right\}_{\text {nor }}} \longleftarrow T_{\text {a towns. }}^{0}$.
(v)

$$
\begin{aligned}
& X_{F} \subseteq X^{*}(T) \\
& "\{X \mid X(F)=1\} \\
& T=\{M \leqslant \operatorname{Dig} \mid X(M)=1
\end{aligned}
$$

for dll $\left.M \in X_{E}\right\}$
(vi) Want digpus) metrier in this sp

$$
\begin{aligned}
& \chi \in X_{F} \\
& \chi\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1}^{0_{1}} \cdots \lambda_{n}^{n_{n}}=1
\end{aligned}
$$

$$
c_{\substack{\text { ergaraluer of } \\ \Psi}}
$$

$$
X\left(\varepsilon^{-\lambda_{2}}, \ldots, q^{a^{2}}\right), X\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right)=\left|\lambda_{1}\right|^{6}-\left.\lambda \lambda_{n}\right|^{6}=1
$$

$C_{\text {suber }}$ is

