ALGEBRA TERM TEST

Justify all your answers with careful proofs.
(1) Let p be a prime and G a p-group. Let X be a finite set with a G-action, and let

$$
n=\#\{x \in X \mid g \cdot x=x \text { for all } g \in G\} .
$$

Show that $n \equiv \# X \bmod p$.
(2) (a) What is the maximal order of an element in S_{7} ? Write down an example of an element with maximal order.
(b) Consider the element $\sigma:=(123)(456) \in S_{6}$. What is the size of its conjugacy class? What is the size of its centralizer, that is, $\left\{g \in G \mid g \sigma g^{-1}=\sigma\right\}$?
(3) Let $D_{2 n}=\left\langle\sigma, \tau \mid \sigma^{n}, \tau^{2}, \tau \sigma \tau^{-1} \sigma\right\rangle$ be the dihedral group with $2 n$ elements. Recall that the commutator subgroup $\left[D_{2 n}, D_{2 n}\right.$] is defined to be the (normal) subgroup generated by elements of the form $g h g^{-1} h^{-1}, g, h \in D_{2 n}$. The abelianization of $D_{2 n}$ is $D_{2 n} /\left[D_{2 n}, D_{2 n}\right]$. What is the order of the abelianization? What is its group structure? (Hint: the answer depends on the parity of n.)
(4) Show that there are no finite simple groups of order 30. Hint: How many subgroups/elements of order 3 are there? How many subgroups/elements of order 5 ?

