
ALGEBRA TERM TEST

Justify all your answers with careful proofs.

(1) Let p be a prime and G a p-group. Let X be a finite set with a
G-action, and let

n = #{x ∈ X|g · x = x for all g ∈ G}.

Show that n ≡ #X mod p.

Proof. Any non-trivial G-orbit G·x in X is isomorphic (by the orbit-
stabilizer theorem) to G/StabG(x), which has order divisible by as
G is a p-group. Writing X as the union of the fixed points with the
non-trivial orbits, we see that

#X = n+


orbits G · x
#G · x,

and reducing this equality mod p gives the desired result. □

(2) (a) What is the maximal order of an element in S7? Write down
an example of an element with maximal order.

Proof. The maximal order is 12, realized by e.g. (1234)(567).
It follows from the fact that disjoint cycles commute that the
order of an element with cycle type (n1, · · · , nr) is the lcm of
the ni; now exhaustive search shows that 12 is the maximum
lcm of a partition of 7. □

(b) Consider the element σ := (123)(456) ∈ S6. What is the size of
its conjugacy class? What is the size of its centralizer, that is,
{g ∈ G|gσg−1 = σ}?

Proof. To compute the size of the conjugacy class, note that
we may put the six numbers in order in 6! ways. We get the
same element of Sn if we cyclically permute the first 3 or last
3 numbers, or if we swap the first three with the last three.
This gives that the conjugacy class has size 6!/(3 · 3 · 2) = 40.
The centralizer is exactly the stabilizer of the element under
conjugation, so orbit-stabilizer gives that it has size 6!/40 =
18. □

(3) Let D2n = 〈σ, τ |σn, τ2, τστ−1σ〉 be the dihedral group with 2n ele-
ments. Recall that the commutator subgroup [D2n, D2n] is defined
to be the (normal) subgroup generated by elements of the form
ghg−1h−1, g, h ∈ D2n. The abelianization of D2n is D2n/[D2n, D2n].
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What is the order of the abelianization? What is its group structure?
(Hint: the answer depends on the parity of n.)

Proof. We first compute that τστ−1σ−1 = σ−2 is in the commutator
subgroup; hence the same is true for σ2.

Case 1: n is odd. Then there exists m with 2m ≡ 1 mod n, hence
in this case σ = (σ2)m. Thus the commutator subgroup contains σ.
But D2n/〈σ〉 = 〈σ, τ |σ,σn, τ2, τστ−1σ〉 = 〈τ |τ2〉 = Z/2Z is abelian,
hence must in fact be the abelianization. It has order 2.

Case 2: n = 2m is even. In this case we compute D2n/〈σ2〉 =
〈σ, τ |σ2,σ2m, τ2, τστ−1σ〉 = 〈σ, τ |σ2, τ2, τστ−1σ−1〉 = (Z/2Z)2, which
has order 4. (Here the isomorphism between the group with this pre-
sentation and (Z/2Z)2 sends σ to (1, 0) and τ to (0, 1).) □

(4) Show that there are no finite simple groups of order 30. Hint: How
many subgroups/elements of order 3 are there? How many sub-
groups/elements of order 5?

Proof. 30 factors as 2 · 3 · 5. Let us compute the numbers n3, n5 of
3-Sylow (resp. 5-Sylow) subgroups. We have n3 = 1 mod 3, n3|10,
so n3 = 1 or n3 = 10. Similarly n5 = 1 or n5 = 6. If either n3 or n5

equals 1, we’re done (as the relevant p-Sylow is normal), so assume
for the sake of contradiction that n3 = 10, n5 = 6.

In this case there are 10 3-Sylows, each containing 2 elements of
order 3, with pairwise trivial intersection (as they are simple). Hence
there are 20 = 2 × 10 elements of order 3. The same reasoning
shows there are 24 = 4 · 6 elements of order 5. But 20 + 24 > 30,
contradiction. □


