ALGEBRA TERM TEST

Justify all your answers with careful proofs.
(1) Let p be a prime and G a p-group. Let X be a finite set with a G-action, and let

$$
n=\#\{x \in X \mid g \cdot x=x \text { for all } g \in G\}
$$

Show that $n \equiv \# X \bmod p$.
Proof. Any non-trivial G-orbit $G \cdot x$ in X is isomorphic (by the orbitstabilizer theorem) to $G / \operatorname{Stab}_{G}(x)$, which has order divisible by as G is a p-group. Writing X as the union of the fixed points with the non-trivial orbits, we see that

$$
\# X=n+\sum_{\text {orbits } G \cdot x} \# G \cdot x
$$

and reducing this equality $\bmod p$ gives the desired result.
(2) (a) What is the maximal order of an element in S_{7} ? Write down an example of an element with maximal order.

Proof. The maximal order is 12 , realized by e.g. (1234)(567). It follows from the fact that disjoint cycles commute that the order of an element with cycle type $\left(n_{1}, \cdots, n_{r}\right)$ is the lcm of the n_{i}; now exhaustive search shows that 12 is the maximum lcm of a partition of 7 .
(b) Consider the element $\sigma:=(123)(456) \in S_{6}$. What is the size of its conjugacy class? What is the size of its centralizer, that is, $\left\{g \in G \mid g \sigma g^{-1}=\sigma\right\}$?

Proof. To compute the size of the conjugacy class, note that we may put the six numbers in order in 6 ! ways. We get the same element of S_{n} if we cyclically permute the first 3 or last 3 numbers, or if we swap the first three with the last three. This gives that the conjugacy class has size $6!/(3 \cdot 3 \cdot 2)=40$. The centralizer is exactly the stabilizer of the element under conjugation, so orbit-stabilizer gives that it has size $6!/ 40=$ 18.
(3) Let $D_{2 n}=\left\langle\sigma, \tau \mid \sigma^{n}, \tau^{2}, \tau \sigma \tau^{-1} \sigma\right\rangle$ be the dihedral group with $2 n$ elements. Recall that the commutator subgroup $\left[D_{2 n}, D_{2 n}\right]$ is defined to be the (normal) subgroup generated by elements of the form $g h g^{-1} h^{-1}, g, h \in D_{2 n}$. The abelianization of $D_{2 n}$ is $D_{2 n} /\left[D_{2 n}, D_{2 n}\right]$.

What is the order of the abelianization? What is its group structure? (Hint: the answer depends on the parity of n.)
Proof. We first compute that $\tau \sigma \tau^{-1} \sigma^{-1}=\sigma^{-2}$ is in the commutator subgroup; hence the same is true for σ^{2}.

Case 1: n is odd. Then there exists m with $2 m \equiv 1 \bmod n$, hence in this case $\sigma=\left(\sigma^{2}\right)^{m}$. Thus the commutator subgroup contains σ. But $D_{2 n} /\langle\sigma\rangle=\left\langle\sigma, \tau \mid \sigma, \sigma^{n}, \tau^{2}, \tau \sigma \tau^{-1} \sigma\right\rangle=\left\langle\tau \mid \tau^{2}\right\rangle=\mathbb{Z} / 2 \mathbb{Z}$ is abelian, hence must in fact be the abelianization. It has order 2 .

Case 2: $n=2 m$ is even. In this case we compute $D_{2 n} /\left\langle\sigma^{2}\right\rangle=$ $\left\langle\sigma, \tau \mid \sigma^{2}, \sigma^{2 m}, \tau^{2}, \tau \sigma \tau^{-1} \sigma\right\rangle=\left\langle\sigma, \tau \mid \sigma^{2}, \tau^{2}, \tau \sigma \tau^{-1} \sigma^{-1}\right\rangle=(\mathbb{Z} / 2 \mathbb{Z})^{2}$, which has order 4. (Here the isomorphism between the group with this presentation and $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ sends σ to $(1,0)$ and τ to $\left.(0,1).\right)$
(4) Show that there are no finite simple groups of order 30. Hint: How many subgroups/elements of order 3 are there? How many subgroups/elements of order 5 ?

Proof. 30 factors as $2 \cdot 3 \cdot 5$. Let us compute the numbers n_{3}, n_{5} of 3 -Sylow (resp. 5-Sylow) subgroups. We have $n_{3}=1 \bmod 3, n_{3} \mid 10$, so $n_{3}=1$ or $n_{3}=10$. Similarly $n_{5}=1$ or $n_{5}=6$. If either n_{3} or n_{5} equals 1 , we're done (as the relevant p-Sylow is normal), so assume for the sake of contradiction that $n_{3}=10, n_{5}=6$.

In this case there are 103 -Sylows, each containing 2 elements of order 3 , with pairwise trivial intersection (as they are simple). Hence there are $20=2 \times 10$ elements of order 3 . The same reasoning shows there are $24=4 \cdot 6$ elements of order 5 . But $20+24>30$, contradiction.

