ALGEBRA HW5

All rings are commutative in this problem set.
(1) (a) Let R be a ring and $I \subset R$ an ideal. Let M be an R-module. Construct an isomorphism $M \otimes_{R}(R / I) \xrightarrow{\sim} M / I M$, where $I M \subset$ M is the submodule generated by elements of the form $i \cdot m$, where $i \in I, m \in M$.
(b) Deduce that for ideals $I, J \subset R$, there is a natural isomorphism

$$
R / I \otimes_{R} R / J \xrightarrow{\sim} R /(I+J) .
$$

(2) (a) Let A_{1}, \cdots, A_{n} be finite cyclic groups. Determine (with proof) the order of

$$
A_{1} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} A_{n}
$$

(b) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$ as rings.
(3) Suppose R is a domain and M an R-module. Recall that

$$
M_{\mathrm{tor}}=\{x \in M \mid r x=0 \text { for some } r \in R-\{0\}\}
$$

a submodule of M. We say that M is torsion if $M_{\text {tor }}=M$.
(a) Let $\operatorname{Ann}_{R}(M):=\{r \in R \mid r m=0$ for all $m \in M\}$, the annihilator of M. Show that $\operatorname{Ann}_{R}(M)$ is an ideal of R.
(b) Suppose that I, J are ideals of R such that $R / I \simeq R / J$ as R modules. Show that $I=J$. (Hint: consider annihilators.)
(c) Aside (for R any commutative ring): show that an R-module M is simple (i.e. it's nonzero and its only submodules are $\{0\}$ and M) if and only if M is isomorphic to R / I with I a maximal ideal of R.
(d) If M is a finitely generated torsion R-module show that $\operatorname{Ann}_{R}(M) \neq$ 0.
(e) Give an example of a domain R and a torsion R-module M such that $\operatorname{Ann}_{R}(M)=0$.
(4) Let R be an integral domain, M an R-module, and $K=\operatorname{Frac}(R)$ the field of fractions of R. Show that M is torsion if and only of $M \otimes_{R} K=0$.
(5) Let R be an integral domain of characteristic zero, i.e. such that no nonzero multiple of 1 is equal to zero. Let M be an $n \times n$ matrix over R. Show that M is nilpotent (i.e. $M^{N}=0$ for some $N \gg 0$) if and only if $\operatorname{Tr}\left(M^{r}\right)=0$ for all $r>0$.
(6) In this exercise we will prove the Cayley-Hamilton theorem over commutative rings R : a square matrix satisfies its own characteristic polynomial.
(a) Show that the statement is true for matrices in Jordan normal form. Deduce that it is true for arbitrary matrices over \mathbb{C}.
(b) Consider the ring $S=\mathbb{Z}\left[X_{i j}\right]_{i, j=1, \cdots n}$. Let M be the matrix $M=\left(X_{i j}\right)_{i, j=1, \cdots n}$. Show that the Cayley-Hamilton theorem is true for this matrix. (Hint: Embed S in \mathbb{C}.)
(c) Deduce that the Cayley-Hamilton theorem holds for arbitrary square matrices over arbitrary commutative rings R. (Hint: Given a matrix $M=\left(m_{i j}\right)$, consider the map $\mathbb{Z}\left[X_{i j}\right]_{i, j=1, \cdots n} \rightarrow$ R sending $X_{i j}$ to $m_{i j}$.)
(7) Prove that if k is a field, then $k[[x]]$ is a PID.

