ALGEBRA HW5

All rings are commutative in this problem set.

- (1) (a) Let R be a ring and $I \subset R$ an ideal. Let M be an R-module. Construct an isomorphism $M \otimes_R (R/I) \xrightarrow{\sim} M/IM$, where $IM \subset M$ is the submodule generated by elements of the form $i \cdot m$, where $i \in I, m \in M$.
 - (b) Deduce that for ideals $I, J \subset R$, there is a natural isomorphism

$$R/I \otimes_R R/J \xrightarrow{\sim} R/(I+J).$$

(2) (a) Let A_1, \dots, A_n be finite cyclic groups. Determine (with proof) the order of

$$A_1 \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} A_n.$$

(b) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \oplus \mathbb{C}$ as rings.

(3) Suppose R is a domain and M an R-module. Recall that

 $M_{\text{tor}} = \{ x \in M \mid rx = 0 \text{ for some } r \in R - \{0\} \},\$

a submodule of M. We say that M is torsion if $M_{tor} = M$.

- (a) Let $\operatorname{Ann}_R(M) := \{r \in R \mid rm = 0 \text{ for all } m \in M\}$, the annihilator of M. Show that $\operatorname{Ann}_R(M)$ is an ideal of R.
- (b) Suppose that I, J are ideals of R such that $R/I \simeq R/J$ as R-modules. Show that I = J. (Hint: consider annihilators.)
- (c) Aside (for R any commutative ring): show that an R-module M is simple (i.e. it's nonzero and its only submodules are $\{0\}$ and M) if and only if M is isomorphic to R/I with I a maximal ideal of R.
- (d) If M is a finitely generated torsion R-module show that $\operatorname{Ann}_R(M) \neq 0$.
- (e) Give an example of a domain R and a torsion R-module M such that $\operatorname{Ann}_R(M) = 0$.
- (4) Let R be an integral domain, M an R-module, and K = Frac(R) the field of fractions of R. Show that M is torsion if and only of $M \otimes_R K = 0$.
- (5) Let R be an integral domain of characteristic zero, i.e. such that no nonzero multiple of 1 is equal to zero. Let M be an $n \times n$ matrix over R. Show that M is nilpotent (i.e. $M^N = 0$ for some $N \gg 0$) if and only if $Tr(M^r) = 0$ for all r > 0.
- (6) In this exercise we will prove the Cayley-Hamilton theorem over commutative rings R: a square matrix satisfies its own characteristic polynomial.

ALGEBRA HW5

- (a) Show that the statement is true for matrices in Jordan normal form. Deduce that it is true for arbitrary matrices over \mathbb{C} .
- (b) Consider the ring $S = \mathbb{Z}[X_{ij}]_{i,j=1,\dots n}$. Let M be the matrix $M = (X_{ij})_{i,j=1,\dots n}$. Show that the Cayley-Hamilton theorem is true for this matrix. (Hint: Embed S in \mathbb{C} .)
- (c) Deduce that the Cayley-Hamilton theorem holds for arbitrary square matrices over arbitrary commutative rings R. (Hint: Given a matrix $M = (m_{ij})$, consider the map $\mathbb{Z}[X_{ij}]_{i,j=1,\dots,n} \to$ $R \text{ sending } X_{ij} \text{ to } m_{ij}.)$ (7) Prove that if k is a field, then k[[x]] is a PID.

 $\mathbf{2}$