ALGEBRA HW3

(1) Let $p \neq 2$ be a prime, and let $k>0$ be a positive integer such that $2^{k} p>p$!. Show that no group of order $2^{k} p$ is simple.
(2) Show that the group of upper-triangular matrices in $G L_{n}\left(\mathbb{F}_{p}\right)$ is solvable.
(3) Let $G \subset G L_{n}(\mathbb{Z} / p \mathbb{Z})=\operatorname{Aut}\left((\mathbb{Z} / p \mathbb{Z})^{n}\right)$ be a p-group. Show that there exists a non-zero element of $(\mathbb{Z} / p \mathbb{Z})^{n}$ fixed by G. (Hint: consider the number of fixed elements, modulo p.)
(4) Write down a careful, detailed proof of the Yoneda lemma.
(5) Let R be a ring.
(a) Let $a, b \in R$, such that a, b commute. Let p be a prime number such that $p=0$ in R. Show that $(a+b)^{p}=a^{p}+b^{p}$.
(b) Let $x \in R$ be nilpotent, i.e. there exists some n such that $x^{n}=0$. Show that $1+x \in R^{\times}$, i.e. it has a multiplicative inverse.
(c) Suppose that there exists a prime p such that $p=0$ in R. Let $x \in R$ be nilpotent. Show that there exists some $m>0$ with $(1+x)^{m}=1$.
(6) Consider the functor Rings \rightarrow Grp sending R to R^{\times}, the group of elements of R with a multiplicative inverse. Show that this functor has a left adjoint.
(7) Show that the group $\left\langle a, b, c \mid a^{2}, b^{3}, c^{4}, a b c\right\rangle$ is isomorphic to S_{4} (by writing down an explicit isomorphism).

