ALGEBRA HW3

- (1) Let $p \neq 2$ be a prime, and let k > 0 be a positive integer such that $2^k p > p!$. Show that no group of order $2^k p$ is simple.
- (2) Show that the group of upper-triangular matrices in $GL_n(\mathbb{F}_p)$ is solvable.
- (3) Let $G \subset GL_n(\mathbb{Z}/p\mathbb{Z}) = \operatorname{Aut}((\mathbb{Z}/p\mathbb{Z})^n)$ be a *p*-group. Show that there exists a non-zero element of $(\mathbb{Z}/p\mathbb{Z})^n$ fixed by *G*. (Hint: consider the number of fixed elements, modulo *p*.)
- (4) Write down a careful, detailed proof of the Yoneda lemma.
- (5) Let R be a ring.
 - (a) Let $a, b \in R$, such that a, b commute. Let p be a prime number such that p = 0 in R. Show that $(a + b)^p = a^p + b^p$.
 - (b) Let $x \in R$ be nilpotent, i.e. there exists some n such that $x^n = 0$. Show that $1 + x \in R^{\times}$, i.e. it has a multiplicative inverse.
 - (c) Suppose that there exists a prime p such that p = 0 in R. Let $x \in R$ be nilpotent. Show that there exists some m > 0 with $(1+x)^m = 1$.
- (6) Consider the functor Rings \rightarrow Grp sending R to R^{\times} , the group of elements of R with a multiplicative inverse. Show that this functor has a left adjoint.
- (7) Show that the group $\langle a, b, c | a^2, b^3, c^4, abc \rangle$ is isomorphic to S_4 (by writing down an explicit isomorphism).