ALGEBRA HW2

(1) Let p, q be distinct primes. Show that any group G of order $p q$ is a semidirect product of two cyclic groups.
(2) Let $S L_{2}(\mathbb{Z})$ be the group of 2×2 matrices with integer entries and determinant 1 , under multiplication, i.e.

$$
S L_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

Show that $S L_{2}(\mathbb{Z})$ is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(This is exercise 6.10 in Aluffi; you can check there if you need a hint.)
(3) Let $H \subset G$ be a subgroup of index 2 (i.e. $|G / H|=2$). Show that H is normal. (Note that G need not be finite!) Give an example to show that subgroups of index 3 need not be normal.
(4) Construct a left adjoint to the inclusion $\mathrm{Ab} \hookrightarrow$ Grp.
(5) Find all normal subgroups of S_{4} (with proof). Prove that S_{4} is solvable.
(6) (a) Let G act on a set X. Suppose $x, y \in X$ are in the same G-orbit. Show that Stab_{x} is conjugate to Stab_{y}.
(b) Let X, Y be transitive (left) G-sets. Choose $x \in X, y \in Y$. Show that X, Y are isomorphic as G-sets if and only if Stab_{x} is conjugate to Stab_{y}.
(7) Suppose $G=\left\langle x_{1}, \cdots, x_{n} \mid r_{1}, \cdots, r_{m}\right\rangle$ with $m<n$. Show that G is infinite. (Hint: construct a nontrivial $\operatorname{map} G \rightarrow \mathbb{Q}$. You may find (4) above helpful.)

