Etale cohomology
Last time: - Stalles, sheatifiction, $\operatorname{Sh}\left(X_{\text {et }}\right)$ is abeliem

$$
\text { Niklas's } Q: X_{\text {pppt }} \quad X_{6 t}
$$

\perp Na Nues an garink bo on $\mathrm{sh}(-)$.
Thm $\operatorname{Sh}\left(X_{E t}\right)$ has enangh injuetives.
Pf. $\bar{J}=\operatorname{Sh}^{h}\left(X_{\theta}\right)$, wat injuativested d 1 Fad.
For each $x \times X$, choose a gere. pt $\bar{x} \rightarrow x \rightarrow X$.
Let $I(\bar{x})$ be an injation abs.sp al a unp $\overline{\mathrm{o}} \overline{\mathrm{x}} \longrightarrow I(\overline{\mathrm{k}})$.
Clank $\pi_{8}\left(1_{8}\right)_{s} I(\bar{x}) \quad \because$
昭 (1) 子ud
(3)d in iaptrep
(2) Monic: clack on stalles.

Achiond: $\operatorname{Sh}\left(X_{t+1}\right)$ Able.a, 1 emangh mijatives
Rom True for $\operatorname{Sh}(\tau)$, but subs stantilly cany site.
harder.

Inverse ingege

$$
f: X \rightarrow Y
$$

(i) (Preshant)

$$
\begin{aligned}
& \text { (Presheat) } \\
& f^{-1}: \operatorname{Pre}\left(Y_{i t}\right) \rightarrow \operatorname{PreSh}\left(X_{i t}\right) \\
& f^{-1} \bar{J}(V \overrightarrow{e r t} X)=\lim _{\longrightarrow} \tilde{J}(U \rightarrow X)
\end{aligned}
$$

Whe limit is ave

$$
\begin{aligned}
& V \rightarrow U \\
& L_{i+1} \rightarrow x \\
& V_{i+t}
\end{aligned}
$$

Fact f^{-1} is left adjant to pushlavaral

$$
\operatorname{Pr} e \operatorname{Sh}\left(y_{e}+1\right) \frac{f_{+-1}}{f_{1}-1} \operatorname{Pre} \operatorname{Sin}\left(x_{b-1}\right)
$$

(ii) (Shemes) $f^{*} \sigma:=\left(f^{-r} \delta\right)^{a}$

Thm f^{*} is left cojount to f.
Pf Shatifration is a $16+$ tajjunt:
Ex $=\bar{x} \underset{\text { gempr. }}{l} x \quad l^{l} \bar{f}=\bar{\gamma}_{\bar{x}}$.

$$
\begin{aligned}
& \text { - } y \rightarrow x, f^{\circ} \mathbb{Z} l l \mathbb{Z}=\mathbb{Z} / e \mathbb{Z} \\
& \text { - Yf } f x, \sigma=\operatorname{Hom}_{x}(-, 2) \\
& f^{\prime \prime} F=\operatorname{Hon}(-, \underset{x}{x} \text {). }
\end{aligned}
$$

"Compute" éter cohmadosy.
Deh Given $\bar{J} \leqslant S S_{1}\left(X_{e 1}\right)$

$$
H^{i}\left(X_{i}, \tilde{j}\right)=R^{i} \Gamma(X, \tilde{j})
$$

To compute: Choos: $\mathcal{f} \rightarrow \underset{q_{\text {injectiveosjuts }}^{0} \rightarrow J_{1}^{\prime}=\ldots}{ }$

$$
\begin{aligned}
& H^{i}\left(X_{i b}, \bar{\jmath}\right)=H^{i}\left(\Gamma\left(X, d^{\circ}\right)\right) \\
& \left(R^{i} \pi_{n}\right) \bar{\sigma}=H^{i}\left(\pi_{*} D^{0}\right) \text { showel on Yit. } \\
& \pi: X_{\text {et }} \rightarrow Y_{\text {ie }} \\
& L^{i} \pi^{-} \delta=0 \quad \text { if } i>0 .
\end{aligned}
$$

Clum(exesciz) Pullback is exact.

Basi Properties:
(1) $H^{0}\left(X_{\text {ét }}, \bar{j}\right)=\bar{\gamma}(X)=\Gamma(X, \bar{\gamma})$
(2) $H^{\prime}(\Omega)=0$ for $i>0$, d injutive
(3)

$$
\begin{aligned}
0 \rightarrow \bar{\sigma}_{1} \rightarrow & \bar{\sigma}_{2} \rightarrow \bar{\sigma}_{3} \rightarrow 0 \\
& S E S \text { in } \operatorname{Sh}\left(x_{i+}\right)
\end{aligned}
$$

get $\rightarrow H^{i} \cdots\left(X_{i 1}, \bar{\sigma}_{3}\right) \rightarrow H^{i}\left(X_{i 1}, \tilde{\sigma}_{1}\right) \rightarrow H^{i}\left(X_{i t}, \tilde{\sigma}_{2}\right)$

$$
\rightarrow H^{i}\left(X_{i d}, F_{3}\right) \sim \cdots
$$

Ex $k-$ folld $^{2} \operatorname{Sh}\left((\text { Speek })_{k_{t}}\right)$ (Choose a ap' ${ }^{\prime} 6$ closm (sioft)

$$
\left.G=G_{a}\right)\left(k^{s} / k\right)
$$

$$
\bar{J} \longmapsto \lim _{k<l c k^{j}} \mathcal{F}\left(s_{p_{c}} l\right)
$$

is an egaivalance of categories.
Cor $H^{i}\left((\text { Spee } k)_{e t,}, \dot{F}\right)=H^{i}(G,(\sigma)$
Pf of clam Invers functas:
Given $V \rightarrow$ Sperk étel, $V=\bigsqcup_{k^{\prime} / k \text { fonsepple }}^{1 \text { Spk' }}$

Given a discrete G-moduk M,

$$
M \sim\left(V_{-}-\pi M^{G(1)\left(b^{\prime} / k^{\prime}\right)}\right)^{\prime}
$$

Pf of $\operatorname{Cov} \Gamma($ Spech, $\overline{\text { S }})=\left(\llcorner\delta)^{G}\right.$

$$
\mathrm{H}^{\mathrm{O}} \rightleftarrows \text { inuts }
$$

\Rightarrow étab co handeryy =grapp calonderys.
Ex Discrote G-modubs Sh(spack lét \quad

$$
E\left(k^{5}\right) \rightleftharpoons \text { Hont }, \frac{E}{C_{c}(l l}
$$

Cech Conomology
<(1) Ceeh cioh. does not always conpute étcle cohonology
(2) Gech coh. is not artaclly compatish (h/e ingenarl a cycl.e coves DNE).
$U=\bigcup_{i} U_{i}-X$ étele cover. (Vak i $x_{i s,}$ f.p.pres.)

$$
\bar{j} \in \operatorname{Sh}\left(X_{i t}\right)
$$

$$
\begin{aligned}
& X \leftarrow U \approx U_{x}^{x} \circlearrowright \equiv U_{x} U_{x} \cup \\
& \text { 的 (}- \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { l } \varepsilon(-1))^{\prime} \\
& \breve{C}^{\prime}(U / X, \bar{f}): 0 \rightarrow f(U) \rightarrow \bar{f}\left(U_{x} U\right) \rightarrow
\end{aligned}
$$

Dehn $H^{i}(U / X, \bar{\sigma})=H^{\prime}(\breve{C} \cdot(U / X, \sigma))$

$$
H^{i}\left(X_{i}, \bar{J}\right)=H^{i}\left(\breve{C}^{\prime}\left(X_{k+1}, \mathcal{F}\right)\right)
$$

Prop $H^{\circ}(U / X, \bar{z})=H^{\circ}\left(X_{6}, \bar{\sigma}\right)=H^{\circ}(X, \bar{\sigma})$ Pf $\bar{\sigma}(X) \rightarrow \bar{\xi}(U) \backsim \bar{f}\left(U_{x}^{1} U\right)$ enat (shet condition)
Prop $H^{i}(U / X, d)=H^{i}\left(X_{i s}, d\right)=0$ \&
ion d injective.
Pf Enough to shaw $C^{\circ}(U / X, d)$
is exact a nay from 0 .
(1) Let $\mathbb{Z}_{u}=\mathbb{Z}\left[\operatorname{Hon}_{x}(-, U)\right]$

Then (dam)

(2) ETS: $\mathbb{Z} \rightarrow \mathbb{Z}_{u} \rightarrow \mathbb{Z}_{u \times \cup} \rightarrow \cdots$ is exact
(3) Special case of: given a set S,

$$
\begin{aligned}
& \text { Special case of : given a set } \geq \text {, } \\
& \mathbb{Z}_{1} \rightarrow \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{\operatorname{sos}} \rightarrow \mathbb{Z}^{\operatorname{sos}}
\end{aligned}
$$

exact for my S.
Pf Base chape to \mathbb{Z}^{8} - null withy. (uxucire)

Thm If for all

$$
\begin{aligned}
& \text { SES: } O \rightarrow \sigma_{1} \rightarrow \bar{\sigma}_{2} \backsim \tilde{j}_{3} \rightarrow 0 \text { in } \operatorname{Sh}\left(X_{i+}\right)
\end{aligned}
$$

is exact, $H^{\prime}\left(x_{i+1}, \tilde{\sigma}\right) \sim H^{i}\left(x_{\text {br }}, \tilde{\sigma}\right)$ forall i, σ.
If Univeral δ - fanctars. (we II see thas "Cect- to duried s.s.)
Thm (Milne, III) True it X qc and if any finite subeet of X is contained in an ather. (c.s.quesirpucicitive)

