$\widehat{}$

Defn (reduced norm)
$$\mathcal{E}$$
-a-twisted shead
End (\mathcal{E}) - Azumaya algebre
Nm: End (\mathcal{E}) $\rightarrow \mathcal{E}$ and (\mathcal{T} , \mathcal{E}) = \mathcal{O}_X
is given by functoriality of Λ .
Prop Given $f \in End(G)$, f is muchtle
if and only if Nm (f) is a unit.
Pf Chaek locally.
Pf of Tsen's Heaven (μ gals: closed \Rightarrow Br(μ)=0)
Want: Given [a] \in Br(μ), we can find
an α -twisted hime bondle.
Have: α -twisted v.t. \mathcal{E} .
Iden: Find a non-trivial sub-todle of \mathcal{E} if
 $r^{\mu} \mathcal{E} > 1$.
(i) Find $f \in End(\mathcal{E})$ which is not muttle,
i.e. Nm(f) = 0.
Nm: $End(\mathcal{E}) \rightarrow \mu$
 \sim (rule)) dw/ office space
Nm -polynomicl ftm m $r^{\mu}(\mathcal{E})^2$

vari2565.

want a non-triviel zero of
$$f = n k(C)$$
.
Idea: Choose an ample divisor P on C
 $nm:n \xrightarrow{X} \Gamma(C, O(m D))^n = m \in \mathbb{Z}$
 $V = \int_{f}^{f} \Gamma(C, O((deg f)mD + D'))$
 $r(C, O((deg f)mD + D'))$
 $rooles of$
 $rup of allow spaces / k.$
For $m > 0$, $rup from X - Y, u/ dim X > dim Y$
 $\Rightarrow dim'n of any non-empty fiber > 0.$
 $Want dim f^{-1}(0) > 0$
 $ETS : f^{-1}(0) = 0$
 $ETS : f^{-1}(0) = N$
 $O \in f^{-1}(0) = N$.
 $O \in f^{-1}(0) = N$.
 $Pf (k-fraction field of a strictly Henselian dur)$
 $is g < ls. closed.$

Lang's thesis. Exercise Prove this when K is equideratership Zero. 13

Rem (IC) Surface of genus g, Coh I coeffi in ZUNZI (coles the same. Next time: Builday towards, Puncaré duality, When I apet support, ...